
Chapter 23 

Mathematical Modeling 
of Photo- and Thermomorphogenesis in Plants 

Gabriel Rodriguez-Maroto, Pablo Catalán, Cristina Nieto, 
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Abstract 

Increased day lengths and warm conditions inversely affect plant growth by directly modulating nuclear 
phyB, ELF3, and COP1 levels. Quantitative measures of the hypocotyl length have been key to gaining a 
deeper understanding of this complex regulatory network, while similar quantitative data are the founda-
tion for many studies in plant biology. Here, we explore the application of mathematical modeling, 
specifically ordinary differential equations (ODEs), to understand plant responses to these environmental 
cues. We provide a comprehensive guide to constructing, simulating, and fitting these models to data, using 
the law of mass action to study the evolution of molecular species. The fundamental principles of these 
models are introduced, highlighting their utility in deciphering complex plant physiological interactions 
and testing hypotheses. This brief introduction will not allow experimentalists without a mathematical 
background to run their own simulations overnight, but it will help them grasp modeling principles and 
communicate with more theory-inclined colleagues. 

Key words Mathematical modeling, Ordinary differential equations (ODEs), Law of mass action, 
Systems biology, Dynamical systems, Numerical simulation, Bifurcation analysis, Model building, 
Simulated annealing 

1 Introduction 

After the discovery that warm temperatures modify light-grown 
seedling architecture and the coining of the “thermomorphogen-
esis” biological term, much recent work has focused on under-
standing the effects of both light and temperature on plant 
development [1]. To disentangle the complex network of molecu-
lar actors involved in sensing and responding to light and tempera-
ture, development of mathematical models is a very helpful asset. In 
this chapter, we outline the basic procedure to develop a
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mathematical model of plant systems biology. We will focus on 
systems of ordinary differential equations (ODEs), and in what 
follows, we will explain the basic concepts for their derivation.
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Mathematical models help us understand our system of interest 
by allowing us to outline its temporal behavior given certain initial 
conditions. They also help to test different hypotheses and check if 
they are consistent with our data or our previous knowledge. 
Finally, once they are correctly built, they allow us to make predic-
tions about the behavior of our system outside the range of experi-
mental conditions previously measured. 

Modeling is an iterative process. First, several hypotheses about 
the system’s behavior are made. Then, a combination of those 
hypotheses, the available experimental data, and theoretical knowl-
edge (physical and chemical laws) are combined to build the model. 
The next step is to verify whether the model is able to capture and 
mimic the experimental results. If the model’s results match the 
observed data, the model has been successfully built. On the other 
hand, if there are inconsistencies between the model’s results and 
the experimental ones, we will have to review the initial hypotheses 
and adjust the model. In fact, this process can be done even when 
the results match. For instance, it might be possible to reduce the 
complexity of the model without omitting any biologically relevant 
parts by simply ignoring certain variables, grouping parameters, or 
simplifying some intermediate steps. 

The primary objective is not to develop a mathematical model 
that incorporates the maximum number of variables. Even if such a 
comprehensive model were feasible, deriving biological insights 
from it would prove exceedingly challenging due to its inherent 
complexity [2]. Instead, what mathematical modeling pursues in 
biology is to develop a model able to capture the essence of the 
significant interactions, thus providing an outcome that can be fully 
understood from a biological perspective. 

A mathematical model can be defined as a set of equations 
describing the behavior of a system. When modeling plants’ 
responses to light and temperature, the state variables will very 
likely represent the abundance of specific molecular species as a 
function of time, as, for instance, would be the concentration of 
active phytochrome B (phyB) in the nucleus [3]. If the biological 
system under study is a biochemical network, the components of 
that network will be the various molecules involved, and the inter-
actions will correspond to the chemical reactions occurring 
between them. Assuming we know which chemical reactions 
occur, they can be mathematically expressed as [4]: 

Rj : 
n 

i =1 

αijX i → 
kj 

n 

i =1 

βijX i,
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where Rj represents each of the reactions included in the network; 
αij and βij are the stoichiometric coefficients determining the num-
ber of molecules of reactants and products (respectively) involved in 
the reaction; the kj are the reaction constants, and Xi identifies each 
of the species participating in the reaction. The left- and right-hand 
side terms represent the reactants and products, respectively, and 
the arrow indicates the direction of the reaction. 

Once we have identified the chemical reactions, the next step is 
to derive the mathematical equations describing the temporal 
behavior of the system. From a mathematical point of view, this is 
equivalent to finding the temporal derivative of whatever magni-
tude is used to describe the state of the system’s molecules. As we 
will later see, these rates depend on the species participating in the 
reaction, but they can also be functions of environmental condi-
tions, such as light or temperature: many reactions happen only 
during the daytime [5], or reaction rates can be accelerated when 
temperature increases [6]. 

The magnitude we will use to describe the state of the system is 
the concentration of molecules of interest [2]. This way, the math-
ematical model will consist of a set of ODEs describing the tempo-
ral evolution of the concentration of molecules of each species 
involved in the network (see Note 1 for an alternative modeling 
framework). Furthermore, when modeling chemical reaction net-
works, two assumptions are frequently considered. The first is the 
lack of spatial dependence in the reaction rates, which can be 
justified on the grounds of a homogeneous distribution of the 
reactants. The second assumption refers to the use of molecular 
concentrations instead of discrete numbers of molecules. This is 
possible as long as the number of molecules is high enough, and it is 
designated as the continuum hypothesis [2]. 

If we can properly justify the two previous assumptions, the 
equations modeling the overall network will arise from the applica-
tion of the Law of Mass Action. This law states that the rate of any 
chemical reaction is proportional to the product of the concentra-
tions of the reactants [2, 4]. Consider, for instance, the simple 
reaction: 

A þ B → 
k 

C : 

The rate of production of the species C can be easily obtained 
by applying the Law of Mass Action, and it is equal to k[A][B], 
where [A] and [B] denote the concentrations of each reactant, and 
k is a constant of proportionality (rate constant). Importantly, the 
units of this rate constant will depend on the number of reactants in 
each reaction, while the number of products does not play any role 
in the reaction rate. A further important factor to take into consid-
eration is the kinetic order of each reactant [2], which sets



the exponent to which each concentration has to be powered. In 
the previous reaction, the kinetic order of A and B is one. If we had 
the reaction: 
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2A þ B → 
k 

C , 

the kinetic order of A would be two, and hence the reaction rate of 
C would be expressed as k[A]2 [B]. 

Our aim is to obtain an ODE describing the temporal variation 
of the concentration of the different species participating in the 
reaction. Thus, time will be the independent variable, and the 
species’ concentrations will become the dependent variables. In 
the case of a species participating in a single reaction, what we 
chemically called the “reaction rate” is mathematically nothing 
but a temporal derivative. Thus, the reaction rate of the production 
of C is just the temporal variation of C’s concentration: 

d C½ ]
dt 

= k A½ ] B½ ]: 

Note also that if a species participates in several reactions, the 
temporal derivative will be obtained from the addition of the dif-
ferent reaction rates. 

In studying plants’ responses to light and temperature, we will 
need to model the transcription and translation of genes of interest, 
as well as the protein-protein and protein-gene interaction events 
comprising the gene regulatory network (GRNs). The general 
scheme follows the same guidelines explained above, but for the 
sake of clarity, we will provide some examples of modeling GRNs. 

Basically, what makes these GRNs different from the previously 
explained chemical networks is their complexity. Instead of a set of 
single reactions, we have complex chains of reaction processes. For 
instance, both transcription and translation involve a very large 
number of individual biochemical reactions. However, it is not 
just a matter of the high number of reactions involved—these also 
occur in metabolic or pure chemical networks—but the fact that 
many of those reactions are not fully characterized [7]. This clearly 
prevents us from knowing the exact chemical reaction that takes 
place, a main feature that differentiates biological systems with 
respect to other chemical networks. 

In order to circumvent this problem, we often make the sim-
plifying assumption that both transcription and translation happen 
at phenomenological—“effective,” in modeling jargon—rates, 
therefore modeling more abstract reactions. As such, the gene 
expression description will not be as precise as that of the previous 
biochemical networks—it will be more coarse-grained—but it will 
still be useful and manageable. However, detailed models of these 
processes also exist, see for example [8].
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A second problem associated with modeling gene regulatory 
networks has to do with the continuum hypothesis, since often the 
number of molecules involved in the regulation of gene expression 
is not that high. For instance, in the case of proteins regulating gene 
expression, the number of copies per species is in the range of 
several hundred or even less [9]. Regarding encoding genes, the 
numbers are even lower—rarely more than dozens and typically just 
one or two. Surprisingly, the mass-action formalism is still applica-
ble in systems with low numbers of molecules; however, this entails 
a small change in the perspective of the model [2]. Now, the 
differential equations should be understood as descriptors of the 
average behavior of the system over a large population of cells. By 
contrast, to capture the behavior of individual cells, we would 
better employ a different modeling scheme (see Note 1). 

2 Materials 

In order to perform numerical simulations of the model, you will 
need a computer. Personal computers (including laptops) are 
enough for most tasks, while access to high-performance comput-
ing clusters may be necessary for specific aspects such as parameter 
fitting, especially if the model is very complex or involves many 
parameters. 

Numerical simulations of ODEs can be written in most pro-
gramming languages. We favor C++ and Python 3, both open 
source and available for free, and MATLAB (Mathworks, Inc.), 
which requires a license. Tutorials on how to use these languages 
and how to simulate dynamical systems are readily available online 
[10–12]. 

We utilize AUTO [13] for bifurcation analysis, while Mathe-
matica (Wolfram Research) aids us in handling complex analytical 
calculations. 

3 Methods 

In this section, we report on how to build a mathematical model 
from scratch. 

3.1 Read the 

Literature 

To start building the model, you will need to investigate the known 
interactions between the molecular actors involved in your system 
of interest, by performing a thorough literature review. In model-
ing plants’ responses to light and temperature, you will probably 
have to study the effects of photoreceptors (typically phyto-
chromes, but also cryptochromes or others [14]) on your system. 
You will also probably have to include the effect of the circadian 
clock [15]. Identify the main genes and proteins involved in your



process. Write down all relevant interactions, as well as those that 
you hypothesize are possible but have not been measured. And, of 
course, do not reinvent the wheel: there are several beautiful mod-
els out there [16–19]. Take inspiration from or recycle parts of 
published models as needed. Building a mathematical model from 
the gathered information is the key part of the procedure, and the 
most difficult one. You will have to turn the previously noted 
interactions into ODEs. This can be done either using a bottom-
up or a top-down approach. 
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3.2 Build the 

Mathematical Model 

Using a Bottom-Up 

Approach 

Start by writing down the chemical reactions in which all the 
molecular actors are involved: transcription, translation, dimeriza-
tion, degradation, and so on. Use the Law of Mass Action to derive 
a system of ODEs for each molecular species (these will include 
intermediate complexes as well as the molecules of interest). By 
inspecting the scales of the different parameter values, you can 
introduce steady-state approximations that simplify the system. 
For example, the process of a transcription factor binding to 
DNA is generally assumed to occur faster than protein translation. 
Consequently, the equation representing a TF-DNA complex can 
be considered to be in equilibrium. A simple example is as follows: 
we know that constitutive photomorphogenic 1 (COP1) is involved in 
degradation of both phytochrome B (phyB) and early flowering 
3 (ELF3) [20, 21]. When we started to model this interaction, 
we hypothesized that phyB and ELF3 might be competing for a 
finite pool of COP1, so that higher levels of ELF3 would result in 
less phyB degradation since ELF3 would be sequestering COP1. In 
terms of reactions, this translates into: 

E þ C → 
k1 

D1 → 
k2 

C , 

D1 → 
k-1 

E þ C , 

B þ C → 
q1 

D2 → 
q2 

C , 

D2 → 
q -1 

B þ C , 

where E represents ELF3, C is COP1, B is phyB, D1 and D2 are the 
respective ELF3-COP1 and phyB-COP1 complexes, and k1, k-1, 
k2, q1, q-1, q2 are the corresponding rate constants of the reactions. 
For simplicity, we can assume that both ELF3 and phyB will be 
created at rates pE and pB, respectively. 

Translating this into equations, we obtain: 

d E½ ]
dt 

= pE - k1 E½ ] C½ ] þ  k-1 D1½ ], 

d  B½ ]
dt 

= pB - q1 B½ ] C½ ] þ  q -1 D2½ ],
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d C½ ]
dt 

= - k1 E½ ] C½ ] þ  k-1 þ k2ð Þ  D1½ ]- q1 B½ ] C½ ] þ  q -1 þ q2ð Þ  D2½ ], 

d D1½ ]
dt 

= k1 E½ ] C½ ]- k-1 þ k2ð Þ  D1½ ], 

d D2½ ]
dt 

= q1 B½ ] C½ ]- q -1 þ q2ð Þ  D2½ ], 

where the brackets, as before, indicate concentrations. Considering 
that the formation and break-down of these protein complexes is 
fast, we can assume that the derivatives of [D1] and [D2] are close to 
zero (the steady-state assumption), and therefore express their 
concentrations in terms of E, B and C. Also, the sum of the last 
three equations is zero. This implies that the sum of the concentra-
tions of C, D1 and D2 is constant and equal to the initial concen-
tration of COP1, [C]0 (conservation of mass). After some algebra, 
we can express the change in [E] and [B] by only using their rate 
constants and [C]0: 

d E½ ]
dt 

= pE -
k1 

k-1þk2 
k2 C½ ]0 E½ ]

k1 
k- 1þk2 

E½ ] þ  q1 q -1þq2 
B½ ] þ  1 , 

d B½ ]
dt 

= pP-
q1 

q -1þq2 
q2 C½ ]0 B½ ]

k1 
k- 1þk2 

E½ ] þ  q1 q -1þq2 
B½ ] þ  1 : 

Figure 1 shows the comparison between the true solution 
(solid lines) and the approximate solution (dashed lines). Note 
that, after an initial transient, both lines quickly converge once 
the intermediate complexes reach equilibrium. 

3.3 Build the 

Mathematical Model 

Using a Top-Down 

Approach 

When multiple molecular actors are involved and, more impor-
tantly, the details of their molecular interactions are not well 
known, an alternative approach to model building is to write inter-
actions from scratch. For instance, if we know that the expression of 
the phytochrome interacting factor 4 (PIF4) target arabidopsis thali-
ana homeobox2 (ATHB2) is inhibited by phyB [22], ELF3 [23] and 
elongated hypocotyl 5 (HY5) [24], we can write the ODE for 
ATHB2 as follows: 

d ATHB2½ ]
dt 

= 
pP P½ ]

1þ pP P½ ] þ  pE E½ ] þ  pB B½ ] þ  pH H½ ] , 

where [P] is the concentration of PIF4 and [H] is the concentration 
of HY5, the pX indicate the binding strength of species X, while the 
rest are as above. Once you get a sense of how these models work, 
you can come up with a model based on these types of equations 
without all the intermediate derivation. 

In many cases, the top-down approach results in simpler equa-
tions than the ones obtained using the bottom-up approach. For 
instance, when we derived our hypocotyl growth model [25] in the



example of the previous section, we soon realized that the ODEs 
had too many parameters. A model without considering the com-
petition between ELF3 and phyB for COP1 interaction was actually 
equally capable of reproducing the experimental results. The equa-
tions for ELF3 and COP1 nuclear abundance without such a 
competition effect become: 
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Fig. 1 Time evolution of ELF3 and phyB concentrations, using different equations. Solid lines represent the 
complete numerical solution, while dashed lines represent the approximate solution using the steady-state 
approximation for the intermediate complexes. Dotted lines show the solution when there is no competition for 
COP1 between ELF3 and phyB. Parameters: pE = 1, pP = 1.2, k1 = 10, k-1 = 5, k2 = 4, q1 = 9, q-1 = 3, 
q2 = 6, [E](0) = 0.25, [B](0) = 0.25, [C](0) = 2, [D1](0) = 0, [D2](0) = 0 

d E½ ]
dt 

= pE -
k1 

k-1 þ k2 k2 C½ ]0 E½ ], 

d B½ ]
dt 

= pP-
q1 

q -1 þ q2 
q2 C½ ]0 B½ ]: 

These are plotted in Fig. 1 as dotted lines. Note that while this 
solution is not the same as the complete (bottom-up) model, for 
high enough values of [C]0 it is close to the experimental data. 
More importantly, the qualitative behavior of the curves is very 
similar, which allows fitting the experimental data with these sim-
plified equations (see Subheading 3.7 and Note 2). 

Once you have decided on a final set of ODEs, you should 
study the properties of your dynamical system. In order to do this, 
you will have to use a combination of analytical and numerical 
methods. A good starting point is to just run some simulations of 
the equations, playing with the parameter values, to get a feel for 
what the model can do. By studying the properties of the model, 
you will be able to see if the hypotheses you used for developing it



are consistent or not. If not, you should now modify the equations 
in an iterative process until you get the desired results. 

Mathematical Modeling of Photo- and Thermomorphogenesis 255

3.4 Find the Fixed 

Points of Your System 

In many cases, it is very useful to find the fixed points of the system 
of ODEs, i.e., the set of points that make all derivatives equal to 
zero. If they exist and are stable (more on stability in the next 
subsection), these are the stationary values where the system vari-
ables will settle once the initial transients have receded. If the 
system is simple enough, you will be able to obtain analytical 
expressions for these. More frequently, however, the nonlinearities 
of the system will prevent you from obtaining closed analytical 
expressions. In this case, you can try testing approximations for 
when some parameters are small or large using methods from 
perturbation theory [26], or find the fixed points by solving the 
nonlinear algebraic equations numerically. Often, the initial explor-
atory study of the system through simulations (more on how to do 
this below) will find sets of values where the variables stabilize. 

Studying fixed points means focusing on the system’s long-
term behavior, excluding its transient states. In many cases, transi-
ents are not relevant for our purposes, and so the analysis of the 
model will be restricted to the final equilibrium. In other cases, we 
may also be interested in the transient behavior, and numerical 
simulations will then be necessary. Finding analytical solutions, 
that is, closed formulas, for the time dependence of the variables 
is almost for certain an intractable problem for most models in plant 
systems biology. 

3.5 Study the 

Stability of the Fixed 

Points 

The fixed points we do obtain might be stable, meaning that the 
state of the system robustly stays at the fixed point once it has been 
reached. It is important to study this stability, not only to find out 
whether the fixed point is a valid stationary state of the system but 
also to determine if more complex behaviors, like multistability or 
oscillations, may arise. This is usually done by calculating the 
eigenvalues of the Jacobian matrix associated with the system 
[27]. When all the eigenvalues of the Jacobian evaluated at a fixed 
point have negative real part, the fixed point is stable; otherwise, it 
is unstable. As before, you will sometimes be able to do this by hand 
or with the help of a symbolic programming language such as 
Mathematica. In many other cases, you will need to analyze the 
stability of your fixed point by using numerical methods. For this, a 
very good tool is AUTO [13] or its derived package XPPAUT 
[28]. These allow you to study the stability of your system as the 
values of the parameters change—for instance, by drawing bifurca-
tion diagrams—(the use of XPPAUT is nevertheless not straight-
forward; see Note 3).
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3.6 Simulate the 

Model Using Numerical 

ODE Solvers 

This step helps you visualize the dynamics of the system, even when 
it is far from the fixed points. The information gathered through-
out the previous steps is crucial here, since numerical routines can 
be unstable and yield erroneous solutions. Knowing where the fixed 
points should be, and their stability, allows you to check your 
routines. 

Common routines to solve ODEs are ode45 in MATLAB [29], 
integrate.solve_ivp in SciPy (Python) [30] and odeint::integrate in 
C++ [31]. They all offer the user a wide variety of numerical solvers 
(both implicit and explicit, with adaptive and fixed step sizes) that 
suit different problems. Knowing when to use a particular solver is 
not easy, but having them already implemented in these languages 
assists in the trial-and-error process. A common dilemma faced with 
the modeling of large systems of equations is deciding which 
numerical integrator to use. Here, different aspects like the effi-
ciency, accuracy, and stability of the methods need to be carefully 
analyzed. A common strategy is to assume that the ODE problem is 
in principle non-stiff, while it can be defined as stiff if very different 
timescales play a role in the system. Some clever approximations 
may eliminate fast timescales when formulating the problem, but 
this is not always possible. For stiff systems, some numerical meth-
ods will force us to use an extremely small step size to find the 
desired solution—explicit methods—with implicit methods 
performing in general much better in this case [32]. You can 
begin by using a non-stiff solver and then, depending on the 
behavior of the integrator used—accuracy of the found solution, 
computational time, and so on—decide whether to change it or not 
(see Note 4). 

3.7 Parameter Fitting If experimental data is available, you should fit the model to 
it. When studying the response of plants to temperature, data 
spanning a range of temperatures will be helpful in order to make 
predictions, as the reaction rates will change with different tem-
peratures, and you will need to perform separate fits for each of 
them. Similarly, when studying light, either a range of daylengths or 
light intensities will help you discern the effect of light on the 
problem you are studying. Ideally, a careful experimental design 
should be considered when developing a mathematical model. 

As the number of parameters in these models is quite high, a 
manual trial-and-error strategy in which we try to adjust the model 
predictions to the experimental results is not feasible. We need to 
turn to optimization methods, which try to minimize the value of a 
so-called energy (or cost) function. Often, this function will be the 
sum of the squares of the differences between the experimental 
values and the model predictions. Typical methods to obtain 
parameter fits are Monte Carlo algorithms [33], where you start 
with an initial arbitrary set of parameters and make small modifica-
tions to those while accepting the new parameters if the energy



function satisfies particular conditions. Monte Carlo methods vary 
widely in their algorithms of acceptance, as well as their implemen-
tations (see Note 5). Our method of choice is simulated 
annealing [34]. 
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At each step, the simulated annealing algorithm evaluates some 
neighboring state of the current parameter state. By modifying one 
of the parameters slightly and comparing the energy function asso-
ciated with it (Enew) with the one associated with the unperturbed 
parameter set (Eold), it decides whether to accept the new parame-
ter values or not, based on the acceptance probability: 

Pacc = 

1 if  Eold=Enew <1, 

Eold 

Enew 
T A if Eold=Enew <1 

, 

where TA is the “temperature” of the annealing, which decreases 
with each step. The idea is to use probabilities ensuring that the 
system moves to lower energy states. The particularity of simulated 
annealing is that the probability of accepting a parameter change 
resulting in an increase of the energy function decreases with each 
annealing step, using a particular function TA that requires to be 
fine-tuned through trial-and-error. We often use: 

T A = 
0:8 

1þ ip : 

The algorithm will be repeated until either a preset maximum 
number of iterations has been achieved or it successfully meets an 
error tolerance criterion (see Note 6). 

3.8 Making 

Predictions 

Once the model is fitted to the data, you can make predictions of 
the behavior of the system by varying relevant parameters. If your 
model includes the effect of temperature, you can predict the 
behavior of the plant for temperatures out of the set that has been 
measured. Equally, with light, we were able to predict the growth of 
plants at 4 h of day lengths, an experimental condition that had not 
been measured for our system [25]. 

Finally, you can also assess how changing parameters will 
change the behavior of the system. Perhaps a fixed point becomes 
unstable, thus leading to completely different dynamics. Combin-
ing this last step with the previous ones will help you to understand 
the behavior of the system, and gain entirely novel biological 
insights concerning the studied functions. 

4 Notes 

1. ODEs are not the only modeling framework available. If you 
need to introduce spatial information into your model (for
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instance, because you want to understand how different parts 
of a stem or a leaf react to different stimuli), you will need to 
use partial differential equations (PDEs), which we have not 
mentioned here. Some relevant plant modeling studies using 
this framework can be found in [35]. 

Also, it may be that stochasticity is relevant to the system. 
This happens when the number of molecules involved is small 
(and the continuum approximation does not work), and also 
when the response of the cells to environmental changes is not 
deterministic. When this is the case, one may use stochastic 
processes to model the system [36]. Alternatively, stochastic 
differential equations (SDEs), such as the Langevin eq. [37], 
are very common in modeling biological systems, see for 
instance [38, 39]. 

It is worth noting that the simulation and analysis techni-
ques differ for these methods, but detailing them is outside the 
scope of this chapter. 

2. In some cases, simplification of the model using steady-state 
assumptions is not straightforward. It is not until you perform 
numerical simulations that you realize, for instance, that some 
variables reach equilibrium much faster than others; you can 
then assume those to be constants, consequently simplifying 
the simulations. Also, depending on the range of some param-
eter values, corresponding terms in the ODEs can be 
neglected. This does not mean that these interactions do not 
exist, but rather that they are not relevant for the system under 
the experimental conditions being studied. 

Most models of biological systems are “sloppy” [40], 
meaning that some parameters are very important to the 
dynamics while others are not and can thus be removed. For 
large models, this procedure is not easy to do by hand, and 
automated methods making use of the geometry of the 
parameter-to-function manifolds [41] will help us understand 
the basic structure behind these models. 

Sloppiness is a consequence of not having enough data to 
determine the structure of the model. This means that, for a 
given problem, many putative models will be compatible with 
the data, and so the search for the “best” model is futile. We 
can then only aim to understand how the data restricts the 
kinds of models we can build. 

3. It is convenient to emphasize that despite the usefulness of 
XPPAUT for carrying out bifurcation analysis, its handling is 
very demanding. Understanding how to use the program is a 
complex and trial-and-error process. Despite the existing doc-
umentation about this software, the practical examples are 
mostly reduced to prototypical and ideal cases. For real pro-
blems, it can be highly complex not only to solve a particular



Mathematical Modeling of Photo- and Thermomorphogenesis 259

error but just to understand and find out the type of error. 
Nevertheless, XPPAUT and its underlying software, AUTO, 
are considered among the best—if not the best— computa-
tional tools for this type of analysis. 

4. Numerical solvers (especially in Python) often yield numerical 
errors, and great care has to be taken with the parameters of the 
algorithm: step size, solver, and stopping conditions. Given 
that this process can be time-consuming, having approximate 
analytical forms of the solutions or fixed points, regardless of 
their roughness, can prove helpful. You do not want to report 
numerical artifacts as the solution. 

5. Many Monte Carlo methods using Bayesian frameworks exist 
for parameter fitting, and most of them are implemented in 
libraries in Python (for instance, the pyABC library) and 
Matlab (the Markov Chain Monte Carlo Toolbox), making 
this step easier. However, in our experience, these libraries do 
not work well with the kind of problems we have worked with, 
perhaps because of our own limited experience with them. 
Therefore, we have preferred to code our own optimization 
algorithms. Particularly, simulated annealing has worked very 
well for us in many cases. 

6. Model building can be carried out in a more sophisticated 
manner. Moreover, additional steps can be considered, such 
as studying the identifiability of parameters. We refer the reader 
to reference (42) for more details on this approach. 
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