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Introduction

This course is an introduction to Mathematics for students in the Neu-

roscience Degree. The range and depth of math that could be taught

in this course is very wide, so I will try to focus on those concepts that

will be most useful for the degree. Therefore, the course will cover basic

differential and integral calculus, linear algebra and differential equations,

with a focus on these from the perspective of dynamical systems, which

I believe will be most useful for students dealing with nonlinear models.

Many more topics could be included, but time is (sadly) limited. If, after

reading this book, you realize a newfound love for mathematics, please

keep studying them.

For Chapters 1 to 5 I have copied a lot of material from the book “Differ-

ential and Integral Calculus of a Single Variable” by my colleague and

mentor José A. Cuesta.

Chapter 6 is copied almost verbatim from Steven Strogatz’s excellent

“Nonlinear Dynamics and Chaos”.

For the Linear Algebra chapters I have taken most of the material from

Lay, “Linear Algebra and its Applications”.

I took many examples and exercises from Claudia Neuhauser and Marcus

Roper’s “Calculus for Biology and Medicine” which, in fact, covers all

the sections in this course, and many more.

ChatGPT helped me format the excerpted parts of th books I wanted to

include into LaTeX.

I’m grateful to the students that pointed out inconsistencies and who

pointed out areas where the topics could be better explained. I hope to

keep improving the notes as time goes on.



Part I. Differential and
Integral Calculus



1: Sometimes this is also called the

codomain, in case you see it in another

books.

2: If you don’t understand some of these

words, don’t worry, we’ll see them as we

advance in the course.

Functions 1
1.1 An Introduction to Functions

A mathematical function is a rule that assigns an element from a given set

to an element of another set. In other words, a function is a mathematical

object that returns an output when you hand it an input. The set of

possible inputs of a given function is called the domain and the set of

possible outputs is called the range or image1
. The usual notation for

functions is 𝑦 = 𝑓 (𝑥), where 𝑓 represents the rule that assigns the output

𝑦 to the input 𝑥.

Let’s see how this works with a well-known function: 𝑓 (𝑥) = 𝑥2
. What

is the domain of this function? If we don’t specify it, it could be many

things: the set of all matrices with positive numbers, or the set of all

complex numbers, or the set of all polynomials of fifth degree
2

.

In this course, we will work mostly with functions of real numbers,

which we denote with the letter ℝ. The real numbers are very interesting

and if we had time we could talk about how very weird they are. But, for

our purposes, let’s just say that real numbers are those we can write in

decimal form, like 3.141592653 . . . , 2.718281828 . . . , 1.618033988 . . . or

0.999999 . . . . Those real numbers that have a finite or periodic decimal

expression are called rational numbers, ℚ, because we can always

express them as a fraction. The rest are called irrational numbers and

their decimal expressions are only approximations to their true value.

We represent the real numbers on a line, going from −∞ to ∞, and

usually marking where 0 is, the separation between positive and negative

numbers.

When defined on the real numbers, the function 𝑓 (𝑥) = 𝑥2
becomes a

real function from some domain 𝐷 ⊂ 𝑅 to the reals:

𝑓 : 𝐷 −→ ℝ

𝑥 −→ 𝑦 = 𝑥2

(1.1)

What is the set 𝐷? In other words, what are the valid inputs for 𝑥2
? All

the real numbers, since the expression makes sense for them. Given any

number, positive or negative, 𝑥2
returns its square. Now, this output is

always non-negative, and so the range of 𝑓 (𝑥) = 𝑥2
is the non-negative

real line.

Example 1.1.1 Other examples of functions:

1. 𝑦 = |𝑥| represents the rule 𝑓 (𝑥) = |𝑥| that maps each number 𝑥

to its absolute value.

2. The function

𝑓 (𝑥) =
{
𝑥2 𝑥 ≤ 2,

𝑥3 − 3 𝑥 > 2,
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maps all real numbers smaller than or equal to 2 to their square,

and those larger than 2 to their cube minus 3.

The usual way to represent functions is to plot their graph. For a function

𝑓 : 𝐴 ⊂ 𝐴 → ℝ, we need to draw this in a plane, where the horizontal

axis (the 𝑥 axis) represents the input and the vertical axis (the 𝑦 axis)

represents the output. For a given function, we need to plot every point

(𝑥, 𝑓 (𝑥)) for all 𝑥 ∈ 𝐴.

If a function does not repeat outputs for two different inputs, we say

it is injective or one-to-one. For instance, 𝑓 (𝑥) = 𝑥 + 5 is injective. But

𝑓 (𝑥) = 𝑥2
isn’t. If a function is injective, the equation 𝑦 = 𝑓 (𝑥) has either

no solution or a unique solution.

On another hand, if a function covers all of the range (in these examples,

that means ℝ) we say it is surjective or onto. Again, 𝑓 (𝑥) = 𝑥 + 5 is

surjective, but 𝑓 (𝑥) = 𝑥2
isn’t.

If a function is both injective and surjective it is called bĳective. A bĳective

function is a perfect correspondence between to sets.

A function is even if 𝑓 (−𝑥) = 𝑓 (𝑥), and odd if 𝑓 (−𝑥) = − 𝑓 (𝑥).

A function is bounded if there exists 𝑀 > 0 such that | 𝑓 (𝑥)| ≤ 𝑀 for all

𝑥 in its domain.

A function is monotonically increasing if for every 𝑥, 𝑦 in its domain

such that 𝑥 < 𝑦 it satisfies 𝑓 (𝑥) ≤ 𝑓 (𝑦), and is monotonically decreasing
if 𝑓 (𝑥) ≥ 𝑓 (𝑦). We say it is monotonic strictly increasing/decreasing
if inequalities are strict. (Note that a constant is both monotonically

increasing and decreasing, but not strictly.)

1.2 Operations with functions

Algebraic operations

Let 𝐴, 𝐵 ⊂ ℝ and consider the two real functions

𝑓 : 𝐴 −→ ℝ

𝑥 −→ 𝑦 = 𝑓 (𝑥)
𝑔 : 𝐵 −→ ℝ

𝑥 −→ 𝑦 = 𝑔(𝑥)
(1.2)

With these two functions we can perform the following algebraic opera-

tions:

(i) Addition: If 𝐶 = 𝐴 ∩ 𝐵 —where both functions are defined—,

𝑓 + 𝑔 : 𝐶 −→ ℝ

𝑥 −→ 𝑦 = 𝑓 (𝑥) + 𝑔(𝑥)
(1.3)

(ii) Product: If 𝐶 = 𝐴 ∩ 𝐵,

𝑓 𝑔 : 𝐶 −→ ℝ

𝑥 −→ 𝑦 = 𝑓 (𝑥)𝑔(𝑥)
(1.4)
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(iii) Quotient: If 𝐶 = 𝐴 ∩ 𝐵′
, where 𝐵′ ≡ {𝑥 ∈ 𝐵 : 𝑔(𝑥) ≠ 0},

𝑓 /𝑔 : 𝐶 −→ ℝ

𝑥 −→ 𝑦 = 𝑓 (𝑥)/𝑔(𝑥)
(1.5)

For instance, if 𝑓 (𝑥) = 𝑥 + 5 and 𝑔(𝑥) = 𝑥2
, the sum is a new function

ℎ(𝑥) = 𝑓 (𝑥) + 𝑔(𝑥), in this case ℎ(𝑥) = 𝑥2 + 𝑥 + 5. Similarly, we can do

this with products of functions and quotients.

Proposed Exercise 1.2.1 Give one example for product and quotient

of functions, and identify the corresponding domains and ranges.

Compositions

A more involved operation is the composition of two functions. It is

defined as

𝑓 ◦ 𝑔 : 𝐶 −→ ℝ

𝑥 −→ 𝑦 = 𝑓
(
𝑔(𝑥)

) (1.6)

In this case, the domain is not so simple to obtain. For 𝑓 ◦ 𝑔 to be defined

𝑥 must belong to 𝐵, for 𝑔(𝑥) to be well defined, so 𝐶 ⊂ 𝐵. But in order to

evaluate 𝑓
(
𝑔(𝑥)

)
, the number 𝑔(𝑥) ∈ 𝐴. Therefore

𝐶 = {𝑥 ∈ 𝐵 : 𝑔(𝑥) ∈ 𝐴}. (1.7)

Even if 𝐴 and 𝐵 are simple sets, 𝐶 may be much more involved:.

Composition is a noncommutative operation, i.e., 𝑓 ◦ 𝑔 ≠ 𝑔 ◦ 𝑓 .

It is, however, associative, i.e., 𝑓 ◦ (𝑔 ◦ ℎ) = ( 𝑓 ◦ 𝑔) ◦ ℎ. We can thus

define multiple compositions, like 𝑓 ◦ 𝑔 ◦ ℎ ◦𝑤 = 𝑓 (𝑔(ℎ(𝑤(𝑥)))), without

ambiguity.

Inverses

We can introduce the identity function Id(𝑥) = 𝑥. Given a function

𝑓 : 𝐴 −→ ℝ, its inverse would be a function 𝑓 −1
: 𝑓 (𝐴) −→ ℝ such that

𝑓 ◦ 𝑓 −1 = 𝑓 −1 ◦ 𝑓 = Id. The idea is that if 𝑓 maps 𝑥 to 𝑦, its inverse 𝑓 −1

maps 𝑦 back to 𝑥.

Not all functions have an inverse that is defined all over their image 𝑓 (𝐴).
For an inverse to exist the equation 𝑥 = 𝑓 (𝑦), for a given 𝑥 ∈ 𝑓 (𝐴), must

have a unique solution: in other words, 𝑓 must be injective.

For those functions that are not injective in their domain 𝐴, we might be

able to define several inverses by constraining the domain to any subset

where they are made injective. Thus, noninjective functions may have

several inverses.

Example 1.2.1 Let 𝑓 (𝑥) = 𝑥2
. Its domain is ℝ, but this function is

not injective in its domain. However, we can constrain the domain to

be [0,∞). In that case 𝑓 (𝑥) is injective and we can obtain the inverse
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function by finding the unique solution of the equation 𝑥 = 𝑓 (𝑦) = 𝑦2
,

where 0 ≤ 𝑦. Clearly this solution is 𝑦 =
√
𝑥, therefore, within [0,∞),

the inverse of 𝑓 is 𝑓 −1(𝑥) =
√
𝑥.

Note that we might alternatively chosen the domain to be (−∞, 0],
where the function 𝑓 is again injective. However now the solution of

𝑥 = 𝑦2
with 𝑦 ≤ 0 is 𝑦 = −

√
𝑥. So another inverse of 𝑓 is 𝑓 −1(𝑥) = −

√
𝑥.

The graph of 𝑓 −1(𝑥) can be obtained from that of 𝑓 (𝑥) as the mirror

image with respect to the line 𝑦 = 𝑥.

Remark 1.2.1 BEWARE!! Never confuse 𝑓 −1(𝑥) with 𝑓 (𝑥)−1 = 1/ 𝑓 (𝑥),
the reciprocal of 𝑓 . In the case 𝑓 (𝑥) = 𝑥 + 5, its inverse 𝑓 −1(𝑥) = 𝑥 − 5,

whereas ( 𝑓 )−1 = 1/(𝑥 + 5).

1.3 Elementary Functions

Let’s introduce the most common functions used in nearly all mathemat-

ical problems, which we call elementary functions.

Polynomials

These are functions of the form

𝑃𝑛(𝑥) = 𝑎𝑛𝑥
𝑛 + 𝑎𝑛−1𝑥

𝑛−1 + · · · + 𝑎1𝑥 + 𝑎0 , (1.8)

where 𝑎𝑘 ∈ ℝ for all 𝑘 = 0, 1, . . . , 𝑛. The largest power, 𝑛, is called the

degree of the polynomial. Constants are polynomials of degree 0. Given

the operations that define them, the domain of any polynomial is ℝ.

Rational functions

They are defined as quotients of two polynomials, namely

𝑓 (𝑥) = 𝑃𝑛(𝑥)
𝑄𝑚(𝑥)

. (1.9)

The domain of both polynomials is ℝ, but 𝑄𝑚(𝑥) may be zero at some

points, where the quotient will thus not be defined. Hence the domain of

𝑓 (𝑥) is {𝑥 ∈ ℝ : 𝑄𝑚(𝑥) ≠ 0}.

Trigonometric functions

The two basic trigonometric functions are the sine (sin 𝑥) and the cosine

(cos 𝑥). In terms of them we can define also the tangent and cotangent:

tan 𝑥 =
sin 𝑥

cos 𝑥
, cot 𝑥 =

cos 𝑥

sin 𝑥
=

1

tan 𝑥
. (1.10)

The geometric definition of these functions, based on the unit circle, is

described in Figure 1.1.
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Figure 1.1: Geometric definition of sin 𝑥,

cos 𝑥, tan 𝑥, and cot 𝑥.

There are two more trigonometric functions, although less common than

the previous ones, namely the secant (sec 𝑥) and the cosecant (csc 𝑥):

sec 𝑥 =
1

cos 𝑥
, csc 𝑥 =

1

sin 𝑥
. (1.11)

The graphs of sin 𝑥 and cos 𝑥 are plotted in Figure 1.2. Those of tan 𝑥 and

cot 𝑥 in Figure 1.3.

Figure 1.2: Plot of sin 𝑥 and cos 𝑥.

Given their geometric definitions, all these functions are related by

geometric identities. The main ones are listed in Table 1.1.

Example 1.3.1 Periodic functions, like the trigonometric ones, are

functions that “repeat” after some values. In mathematical terms,

𝑓 (𝑥 + 𝑐) = 𝑓 (𝑥), and the smallest 𝑐 for which this is true is called the

period (what is the period of the sine and cosine?). They are clearly

not injective. Take sin 𝑥, for instance. However, an interval where it

is injective is [−𝜋/2,𝜋/2], and so we can obtain the inverse of this
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Figure 1.3: Plot of tan 𝑥 and cot 𝑥.

Trigonometric identities

cos
2 𝑥 + sin

2 𝑥 = 1

cos(𝑥 ± 𝑦) = cos 𝑥 cos 𝑦 ∓ sin 𝑥 sin 𝑦

sin(𝑥 ± 𝑦) = sin 𝑥 cos 𝑦 ± cos 𝑥 sin 𝑦

cos 𝑥 cos 𝑦 = 1

2
[cos(𝑥 − 𝑦) + cos(𝑥 + 𝑦)]

sin 𝑥 sin 𝑦 = 1

2
[cos(𝑥 − 𝑦) − cos(𝑥 + 𝑦)]

1 + tan
2 𝑥 = sec

2 𝑥

Table 1.1: Some important trigonometric

identities.

function within this interval: the arc sine: sin
−1 𝑥 = arcsin 𝑥. But we

might have taken the interval [𝜋/2, 3𝜋/2], for instance. In that case the

inverse would be different: sin
−1 𝑥 = 𝜋 − arcsin 𝑥. Or in the interval

[3𝜋/2, 5𝜋/2] the inverse would be sin
−1 𝑥 = 2𝜋 + arcsin 𝑥.

Similarly, arccos 𝑥 = cos
−1 𝑥 when the domain of cos 𝑥 is taken to be

[0,𝜋], and arctan 𝑥 = tan
−1 𝑥 when the domain of tan 𝑥 is taken to be

(−𝜋/2,𝜋/2).

Exponential

This is the function defined as 𝑓 (𝑥) = 𝑒𝑥 . The constant 𝑒 appearing in

this definition is the irrational number introduced by Euler

𝑒 = 2.71828182845904523536028747135266249775724709369995957 . . .

We will encounter the exponential in many of the problems we will

explore later in the course, especially those dealing with differential

equations.

The properties of the exponential are:

1. Its domain is ℝ.

2. 𝑒𝑥 > 0 for all 𝑥 ∈ ℝ.

3. It is monotonic strictly increasing —hence injective.

4. 𝑒0 = 1.

5. (𝑒𝑥)𝑎 = 𝑒 𝑎𝑥 for any 𝑎 ∈ ℝ.

6. 𝑒𝑥+𝑦 = 𝑒𝑥𝑒𝑦 .
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Figure 1.4: Plot of 𝑒𝑥 and log 𝑥.

7. 𝑒−𝑥 = 1/𝑒𝑥 .

A plot of the exponential function is shown in Figure 1.4.

Logarithm

This is the inverse of the exponential. If 𝑦 = log 𝑥 it means that 𝑥 = 𝑒𝑦 .

Its plot can be seen in Figure 1.4 to mirror that of the exponential with

respect to the line 𝑦 = 𝑥.

Remark 1.3.1 Along these notes, whenever we write 𝑥 = log 𝑦 we

mean that 𝑥 is the solution of the equation 𝑒𝑥 = 𝑦, in other words, log

of a number is the exponent to which we need to rise 𝑒 in order to

obtain that number. In particular log 1 = 0 and log 𝑒 = 1.

The main properties of the logarithm (derived from those of the expo-

nential) are the following:

1. Its domain is (0,∞).
2. Its image is ℝ —hence it is surjective.

3. It is monotonic strictly increasing —hence injective.

4. log 1 = 0.

5. log(𝑥𝑎) = 𝑎 log 𝑥.

6. log(𝑥𝑦) = log 𝑥 + log 𝑦.

7. log(𝑥/𝑦) = log 𝑥 − log 𝑦.
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3: We say ‘mainly’ because there are very

weird functions, which one would intu-

itively not refer to them as continuous, and

nevertheless they are continuous in some

subsets. But we shall not be concerned

with these functions in this course. We

will rather focus on practical, “sensible”

functions.

1.4 Limit of a function

Functions are defined for every single point of their domains. However,

differential calculus has to do with the behaviour of functions “around”

points, not just at them. The limit of a function is a way to characterise

that behavior. The idea is to know what value the function is approaching

as we get closer and closer to a certain point 𝑎 (not necessarily in the

domain of the function).

Example 1.4.1 Consider the function 𝑓 (𝑥) = 𝑥2
and the point 𝑎 = 2 (in

the domain). As we take values of 𝑥 closer and closer to 2, the output

gets closer and closer to 4. This can be shown formally, but for our

purposes it will be enough to understand the qualitative idea. We write

lim

𝑥→2

𝑥2 = 4.

Example 1.4.2 The previous example might suggest that calculating

a limit could be as simple as evaluating 𝑓 (𝑎). To show that this is not

always the case consider the function

𝑓 (𝑥) = 𝑥 − 1

𝑥2 − 1

,

a rational function whose domain is ℝ − {1}. What happens as we

get closer to 1? Using the calculator, we can see that 𝑓 (0.9) = 0.526,

𝑓 (0.99) = 0.5025, 𝑓 (0.999) = 0.5002 and 𝑓 (0.9999) = 0.50002. Again,

this can be proven rigorously, but you get the idea. We write

lim

𝑥→1

𝑥 − 1

𝑥2 − 1

=
1

2

even though 1 is not in the domain of 𝑓 (hence 𝑓 (1) does not even

exists).

If, as 𝑥 → 𝑎, a function grows without limit, we say that the limit of 𝑓 at

𝑎 is infinite.

Proposed Exercise 1.4.1 What is the limit of 𝑓 (𝑥) = 1/(𝑥 − 1) as 𝑥

approaches 1?

1.5 Continuity

Those functions whose limit at a point 𝑎 of their domain coincides with

the value of that function at that point play a very special role in calculus.

They mainly coincide with those functions whose graph “can be plotted

without lifting the pen from the paper” —which is the intuitive notion

of a continuous function.
3

The formal definition of continuity is the

following:

Definition 1.5.1 (Continuity) A real function 𝑓 is said to be continuous
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at a point 𝑎 of its domain if

lim

𝑥→𝑎
𝑓 (𝑥) = 𝑓 (𝑎). (1.12)

Continuous functions are very nice, and so if you sum/multiply/divide

two continuous functions, you get a continuous function. The composition

of two continuous functions is continuous, and the inverse of a continuous

functions is continuous too.

Finally, two important properties of continuous functions. A continuous

function in a closed interval reaches its maximum and minimum values

within the interval (in particular, it is bounded). It also reaches all the

intermediate values between the maximum and the minimum.

Discontinuities

Discontinuities are points where a function is not continuous. There are

several reasons why a function may not be continuous at a point, and

some of them bear a specific name.

A function like 𝑓 (𝑥) = sin 𝑥

𝑥
is continuous in all ℝ except 𝑥 = 0, because

the denominator vanishes at that point. However, the function has a well

defined limit at that point (try to guess it with the calculator):

lim

𝑥→0

sin 𝑥

𝑥
= 1.

So we can re-define the function to be

𝑓 (𝑥) =


sin 𝑥

𝑥
, 𝑥 ≠ 0,

1 𝑥 = 0,

and now it is continuous everywhere in ℝ. One such discontinuity is

called an avoidable discontinuity because it can be “avoided” by properly

defining the function.

The case of the Heaviside step function

𝐻(𝑥) =
{

0 𝑥 < 0,

1 𝑥 ≥ 0,

typifies a stronger case of discontinuity, which cannot be avoided. The

function is continuous inℝ−{0} (because it is a constant for 𝑥 < 0 and for

𝑥 > 0), but at 𝑥 = 0 the left-handed limit is 0 whereas the right-handed

limit is 1. So the limit when 𝑥 → 0 does not exist because, although the

two one-sided limits exist, they are different. This is a jump discontinuity
because the graph of the function “jumps” at that point.

In some cases the function is not continuous because the one or both

of the two one-sided limits is ±∞. Such is the case of 1/𝑥 or log 𝑥. We

say that the function has a singularity at that point. We also call it an

asymptote.
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Finally, a function can be discontinuous simply because it has no limit

at a point. For instance, sin
1

𝑥 is continuous in ℝ − {0} because the limit

when 𝑥 → 0 does not exist.

Proposed Exercise 1.5.1 Which kind of discontinuity has the function

𝑓 (𝑥) = 𝑥 sin
1

𝑥 at 𝑥 = 0?
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Exercises

Exercise 1.1 Determine the domain of the following functions:

(i) 𝑓 (𝑥) = 1

𝑥2 − 5𝑥 + 6

;

(ii) 𝑓 (𝑥) =
√

1 − 𝑥2 +
√
𝑥2 − 1;

(iii) 𝑓 (𝑥) = 1

𝑥 −
√

1 − 𝑥2

;

(iv) 𝑓 (𝑥) =
√

1 −
√

4 − 𝑥2
;

(v) 𝑓 (𝑥) = 1

1 − log 𝑥
;

(vi) 𝑓 (𝑥) = log(𝑥 − 𝑥2);

(vii) 𝑓 (𝑥) =
√

5 − 𝑥
log 𝑥

;

Exercise 1.2

(a) If 𝑓 and 𝑔 are both odd functions, what are 𝑓 + 𝑔, 𝑓 𝑔, and 𝑓 ◦ 𝑔?

(b) And what are the same functions if now 𝑓 is even and 𝑔 is odd?

Exercise 1.3 Check whether the following functions are even or odd:

(i) 𝑓 (𝑥) = 𝑥

𝑥2 + 1

;

(ii) 𝑓 (𝑥) = 𝑥2 − 𝑥
𝑥2 + 1

;

(iii) 𝑓 (𝑥) = sin 𝑥

𝑥
;

(iv) 𝑓 (𝑥) = cos(𝑥3) sin(𝑥2)𝑒−𝑥4

;

(v) 𝑓 (𝑥) = 1√
𝑥2 + 1 − 𝑥

;

(vi) 𝑓 (𝑥) = log

(√
𝑥2 + 1 − 𝑥

)
.

Exercise 1.4

(a) Determine which of these functions are injective. For those that are

obtain their inverse. For those that are not, find two points with

the same image.

(i) 𝑓 (𝑥) = 7𝑥 − 4;

(ii) 𝑓 (𝑥) = sin(7𝑥 − 4);
(iii) 𝑓 (𝑥) = (𝑥 + 1)3 + 2;

(iv) 𝑓 (𝑥) = 𝑥 + 2

𝑥 + 1

;

(v) 𝑓 (𝑥) = 𝑥2 − 3𝑥 + 2;

(vi) 𝑓 (𝑥) = 𝑥

𝑥2 + 1

;

(vii) 𝑓 (𝑥) = 𝑒−𝑥 ;

(viii) 𝑓 (𝑥) = log(𝑥 + 1).

(b) Prove that 𝑓 (𝑥) = 𝑥2 − 3𝑥 + 2 is injective in (3/2,∞).
(c) Determine if those same functions are surjective and bĳective in

their domains.

Exercise 1.5 Consider the function 𝑓 (𝑥) = 3 sin(2𝑥 − 𝜋) + 1.

1. Determine the amplitude, defined as 𝐴 = max 𝑓 (𝑥) − min 𝑓 (𝑥).
2. Determine the period, defined as the minimal value 𝑐 that yields

𝑓 (𝑥 + 𝑐) = 𝑓 (𝑥) for all 𝑥 ∈ ℝ.

3. Determine the phase shift with respect to sin 𝑥.

4. Determine the vertical shift with respect to sin 𝑥.

Exercise 1.6 Use the formulas

sin(𝑥 + 𝑦) = sin 𝑥 cos 𝑦 + cos 𝑥 sin 𝑦,

cos(𝑥 + 𝑦) = cos 𝑥 cos 𝑦 − sin 𝑥 sin 𝑦

to prove the following identities:
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1. sin(𝑥 + 𝜋/2) = cos 𝑥.

2. cos(𝑥−𝜋/2) = sin 𝑥. (what does this tell you about sin 𝑥 and cos 𝑥?)

3. 1 = cos
2 𝑥 + sin

2 𝑥.

4. cos
2 𝑥 = 1+cos 2𝑥

2
.

5. sin
2 𝑥 = 1−sin 2𝑥

2
.

Exercise 1.7 Find all solutions for 𝑥 in the interval [0, 2𝜋) for the equation

2 cos 𝑥 − 3 = 0.

Exercise 1.8

(a) Describe the function 𝑔 in terms of 𝑓 in the following cases (𝑐 ∈ ℝ

is a constant):

(i) 𝑔(𝑥) = 𝑓 (𝑥) + 𝑐;
(ii) 𝑔(𝑥) = 𝑓 (𝑥 + 𝑐);

(iii) 𝑔(𝑥) = 𝑓 (𝑐𝑥);
(iv) 𝑔(𝑥) = 𝑓 (1/𝑥);

(v) 𝑔(𝑥) = 𝑓 (|𝑥|);
(vi) 𝑔(𝑥) = | 𝑓 (𝑥)|;

(vii) 𝑔(𝑥) = 1/ 𝑓 (𝑥);
(viii) 𝑔(𝑥) = max{ 𝑓 (𝑥), 0}.

(b) Plot the functions when 𝑓 (𝑥) = 𝑥2
.

(c) Plot the functions when 𝑓 (𝑥) = sin 𝑥.

Exercise 1.9 Sketch, using the fewest possible calculations, the graph of

the following functions:

(i) 𝑓 (𝑥) = (𝑥 + 2)2 − 1;

(ii) 𝑓 (𝑥) =
√

4 − 𝑥;

(iii) 𝑓 (𝑥) = 𝑥2 + 1

𝑥
;

(iv) 𝑓 (𝑥) = 1

1 + 𝑥2

;

(v) 𝑓 (𝑥) = min{𝑥, 𝑥2};

(vi) 𝑓 (𝑥) = |𝑒𝑥 − 1|;
(vii) 𝑓 (𝑥) = |𝑥2 − 1|;

(viii) 𝑓 (𝑥) = 1 − 𝑒−𝑥 ;
(ix) 𝑓 (𝑥) = log(𝑥2 − 1);
(x) 𝑓 (𝑥) = 𝑥 sin(1/𝑥).

Exercise 1.10 Calculate the following limits, simplifying the common

factors that numerator and denominator may contain:

(i) lim

𝑥→𝑎

𝑥𝑛 − 𝑎𝑛
𝑥 − 𝑎 , 𝑛 ∈ ℕ;

(ii) lim

𝑥→𝑎

√
𝑥 −

√
𝑎

𝑥 − 𝑎 ;

(iii) lim

𝑥→0

1 −
√

1 − 𝑥2

𝑥2

;

(iv) lim

𝑥→1

(
1√
𝑥 − 1

− 2

𝑥 − 1

)
.

hint: This formula will be useful:

𝑥𝑛−𝑦𝑛 = (𝑥−𝑦)
𝑛∑
𝑘=1

𝑥𝑛−𝑘𝑦𝑘−1 = (𝑥−𝑦)(𝑥𝑛−1+𝑥𝑛−2𝑦+𝑥𝑛−3𝑦2+· · ·+𝑥𝑦𝑛−2+𝑦𝑛−1)

Exercise 1.11 Calculate the following limits:

(i) lim

𝑥→∞
𝑥3 + 4𝑥 − 7

7𝑥2 −
√

2𝑥6 + 𝑥5

;

(ii) lim

𝑥→∞
𝑥 + sin 𝑥3

5𝑥 + 6

;
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(iii) lim

𝑥→∞

√
𝑥√

𝑥 +
√
𝑥 +

√
𝑥

;

(iv) lim

𝑥→∞

(√
𝑥2 + 4𝑥 − 𝑥

)
;

Exercise 1.12 Study the continuity of the following functions:

(i) 𝑓 (𝑥) = 𝑒−5𝑥 + cos 𝑥

𝑥2 − 8𝑥 + 12

;

(ii) 𝑓 (𝑥) = 𝑒3/𝑥 + 𝑥3 − 9;

(iii) 𝑓 (𝑥) = 𝑥3
tan(3𝑥 + 2);

(iv) 𝑓 (𝑥) =


sin(𝜋𝑥), 𝑥 < −1,

|𝑥| − 𝑥, −1 ≤ 𝑥 < 1,

(𝑥 − 1)3 , 𝑥 ≥ 1;

(v) 𝑓 (𝑥) =

𝑥2 , 𝑥 ≤ −2,

|𝑥2 − 1|, −2 < 𝑥 < 2,

4𝑥 − 5, 𝑥 ≥ 2;

(vi) 𝑓 (𝑥) =

(𝑥 − 1)2 , 𝑥 > 1,

𝑥 − ⌊𝑥⌋, −1 ≤ 𝑥 ≤ 1,

𝑥 + 1, 𝑥 < −1.

Exercise 1.13 Bolzano’s theorem states that a continuous function in

[𝑎, 𝑏] where the sign of 𝑓 (𝑎) and 𝑓 (𝑏) is different has to cross zero. Which

of these equations have at least one solution ( 𝑓 (𝑥) = 0) in the specified

set?

(i) 𝑥2 − 18𝑥 + 2 = 0, in [−1, 1];
(ii) 𝑥 − sin 𝑥 = 1, in ℝ;

(iii) 𝑒𝑥 + 1 = 0, in ℝ;

(iv) cos 𝑥 + 2 = 0, in ℝ;



1: Think of measuring the speed of a car

by dividing the distance it has run in a

given time.

Derivatives 2
2.1 Concept and definition

Derivatives are introduced to characterise the rate of variation of a function

with a number. The rate of variation measures how much the function

𝑓 (𝑥) increases (positive) or decreases (negative) per unit of variation of

the variable 𝑥. Thus, within the interval [𝑎, 𝑥] this rate will be

Δ 𝑓

Δ𝑥
=
𝑓 (𝑥) − 𝑓 (𝑎)
𝑥 − 𝑎 .

Figure 2.1 illustrates that the narrower the interval [𝑎, 𝑥] where the

variation is measured the more accurate the estimated rate
1

. Ideally, the

measure would be perfect if this interval were infinitely narrow. This is

the notion of derivative and the motivation of its definition:

Figure 2.1: The rate of variation of 𝑓 (𝑥) as

obtained for different intervals.

Definition 2.1.1 (Derivative) The derivative of the function 𝑓 at the point
𝑎 of its domain is defined as

𝑓 ′(𝑎) = lim

𝑥→𝑎

𝑓 (𝑥) − 𝑓 (𝑎)
𝑥 − 𝑎 , (2.1)

provided the limit exists. (When it does, we say that the function is differen-

tiable at 𝑎.)

Figure 2.1 also shows that 𝑓 ′(𝑎) —the rate of variation of 𝑓 (𝑥) at 𝑥 = 𝑎—

coincides with the slope of the straight line tangent to the graph of 𝑓 (𝑥) at

the point

(
𝑎, 𝑓 (𝑎)

)
—which is an important geometric characterization

of the derivative concept.
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Remark 2.1.1 Often you will see the derivative denoted as

𝑓 ′(𝑎) = 𝑑𝑓

𝑑𝑥
(𝑎).

This is Leibniz’s notation —a bit more mnemotechnical because it

reminds that the derivative is, after all, a rate of change of 𝑓 .

Example 2.1.1 Consider the function 𝑓 (𝑥) = 𝑥2
. Its derivative at any

point 𝑥 would be, according to the definition,

lim

ℎ→0

(𝑥 + ℎ)2 − 𝑥2

ℎ
= lim

ℎ→0

𝑥2 + 2𝑥ℎ + ℎ2 − 𝑥2

ℎ
= lim

ℎ→0

(2𝑥 + ℎ) = 2𝑥.

Therefore 𝑓 ′(𝑥) = 2𝑥.

We can generalize this result. Using Newton’s binomial formula:

(𝑥 + ℎ)𝑛 =

𝑛∑
𝑘=0

(
𝑛

𝑘

)
𝑥𝑛ℎ𝑛−𝑘 ,

we can prove that the derivative of 𝑓 (𝑥) = 𝑥𝑛 , with 𝑛 ∈ ℕ arbitrary, at

any point 𝑥 ∈ ℝ is 𝑓 ′(𝑥) = 𝑛𝑥𝑛−1
. (Note that this formula holds even

if 𝑛 = 0, for which 𝑓 (𝑥) = 1.)

Example 2.1.2 Let 𝑓 (𝑥) = sin 𝑥 and 𝑔(𝑥) = cos 𝑥. By definition

𝑓 ′(𝑥) = lim

ℎ→0

sin(𝑥 + ℎ) − sin 𝑥

ℎ
= lim

ℎ→0

sin 𝑥 cos ℎ + cos 𝑥 sin ℎ − sin 𝑥

ℎ

= sin 𝑥 lim

ℎ→0

cos ℎ − 1

ℎ
+ cos 𝑥 lim

ℎ→0

sin ℎ

ℎ
.

But

lim

ℎ→0

sin ℎ

ℎ
= 1, lim

ℎ→0

cos ℎ − 1

ℎ
= − lim

ℎ→0

ℎ
1 − cos ℎ

ℎ2

= −0 · 1

2

= 0,

hence 𝑓 ′(𝑥) = cos 𝑥.

Similarly

𝑔′(𝑥) = lim

ℎ→0

cos(𝑥 + ℎ) − cos 𝑥

ℎ
= lim

ℎ→0

cos 𝑥 cos ℎ − sin 𝑥 sin ℎ − cos 𝑥

ℎ

= cos 𝑥 lim

ℎ→0

cos ℎ − 1

ℎ
− sin 𝑥 lim

ℎ→0

sin ℎ

ℎ
= − sin 𝑥.

Thus we have the result (sin 𝑥)′ = cos 𝑥, (cos 𝑥)′ = − sin 𝑥.

Example 2.1.3 Let 𝑓 (𝑥) = 𝑒𝑥 and compute

𝑓 ′(𝑥) = lim

ℎ→0

𝑒𝑥+ℎ − 𝑒𝑥
ℎ

= 𝑒𝑥 lim

ℎ→0

𝑒 ℎ − 1

ℎ
= 𝑒𝑥 .

We say that 𝑓 is differentiable in the interval (𝑎, 𝑏) if it is differentiable at

every point of the interval.
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2: Note that until now we have been using

𝑦 as a function of 𝑥. Here the independent
variable is time.

The function 𝑓 ′, defined as

𝑓 ′ : 𝐴 −→ ℝ

𝑥 −→ 𝑦 = 𝑓 ′(𝑥),
(2.2)

where 𝐴 is the set of points where 𝑓 is differentiable, is called the

derivative function of 𝑓 (or simply the derivative of 𝑓 ).

Likewise, we can introduce higher order derivatives. For instance, 𝑓 ′′ is

the second derivative of 𝑓 , i.e., the derivative function of 𝑓 ′. Or 𝑓 ′′′ is the

third derivative of 𝑓 , i.e., the derivative function of 𝑓 ′′. And so on. (Beyond

the third derivative it is customary to denote higher order derivatives as

𝑓 (𝑛), the 𝑛th derivative of 𝑓 .)

The following theorem emphasises that differentiability is a more restric-

tive property than continuity.

Theorem 2.1.1 If 𝑓 is differentiable at 𝑎 it is also continuous at 𝑎.

An obvious consequence of this theorem is that discontinuous functions

are not differentiable at the discontinuities.

Example 2.1.4 Function 𝑓 (𝑥) = |𝑥| is continuous in ℝ, however, 𝑓 ′(0)
does not exist. The reason is that

lim

𝑥→0
+

|𝑥| − 0

𝑥 − 0

= lim

𝑥→0
+

𝑥

𝑥
= 1

because |𝑥| = 𝑥 for 𝑥 ≥ 0. However

lim

𝑥→0
−

|𝑥| − 0

𝑥 − 0

= lim

𝑥→0
−

−𝑥
𝑥

= −1

because |𝑥| = −𝑥 for 𝑥 < 0. Therefore the limit defining 𝑓 ′(0) does not

exists because the left-handed and right-handed limits are different.

2.2 Introduction to Differential Equations

Think of an animal population, and let 𝑁(𝑡) be the number of animals at

time 𝑡.2 How does 𝑁 change? Assuming there is no migration, 𝑁 will

increase when there are births, and decrease when there are deaths.

So, if we look at time 𝑡 + Δ𝑡, where Δ𝑡 is a small interval, we can write

𝑁(𝑡 + Δ𝑡) = 𝑁(𝑡) + 𝑏𝑁(𝑡)Δ𝑡 − 𝑑𝑁(𝑡)Δ𝑡 , (2.3)

where 𝑏 and 𝑑 are the number of births and deaths per capita and per

unit time, respectively. Note that we have written these rates as constants.

This is, of course, a massive simplification: we are assuming that these

rates are constant, and this will have consequences for the way the model

behaves. There is nothing wrong with this: all models have assumptions,

we just need to be clear on what they are. The validity of a model will

depend strongly on its assumptions. The assumptions that we are making

here are: (1) all animals are capable of giving birth, (2) an animal’s ability
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3: That means finding a function 𝑁(𝑡) in

terms of elementary functions.

to give birth is constant over its lifetime from birth to death and (3) all

animals have the same likelihood of giving birth. Then for each animal,

there is a single constant rate 𝑏 at which that animal gives birth. And

similarly with death: (1) every animal has the same likelihood of dying,

(2) the death rate does not depend on the number of animals, (3) the

death rate does not vary with time.

Now, it seems natural to think that, as we makeΔ𝑡 smaller, our knowledge

of the population size will be better. With some algebra, we can rewrite

eq. (2.3) as

𝑁(𝑡 + Δ𝑡) − 𝑁(𝑡)
Δ𝑡

= (𝑏 − 𝑑)𝑁(𝑡) (2.4)

and, taking the limit when Δ𝑡 → 0, we get

𝑁 ′(𝑡) = 𝑟𝑁(𝑡), (2.5)

where 𝑟 = 𝑏− 𝑑 is the effective growth rate. This equation is a differential
equation, because it involves derivatives. The solution of a differential

equation is not a number, but a function. In this case, the function 𝑁(𝑡)
that we ignore. Note that in this case, as in many real-life problems, it

is quite easy for us to understand how a variable changes in time (or

space), but not so easy to know its value at a given point in time (or

space). Hence, differential equations are very useful.

Proposed Exercise 2.2.1 We will see how to solve (some) differential

equations later in the course, but see if you can find a solution of the

form 𝑁(𝑡) = 𝑒 𝑎𝑡 , by finding 𝑁 ′(𝑡) and substituting into Equation 2.5.

What is the value of 𝑎? Is that solution unique?

Actually, for many real-life problems we will not know how to solve

the differential equation analytically
3

but we will be able to solve it

numerically. We will not cover numerical simulations in this course, but

know that this, too, is a powerful tool for modelling.

2.3 Algebraic properties of derivatives

The fact that derivatives are defined as limits leads to the following

algebraic properties:

Proposition 2.3.1 Let 𝑓 and 𝑔 be two differentiable functions (in an appro-
priate set). Then:

(i) (𝜆 𝑓 + 𝜇𝑔)′ = 𝜆 𝑓 ′ + 𝜇𝑔′, where 𝜆, 𝜇 ∈ ℝ; (linearity)

(ii) ( 𝑓 𝑔)′ = 𝑓 ′𝑔 + 𝑓 𝑔′; (Leibniz’s rule)

(iii) ( 𝑓 ◦ 𝑔)′ = ( 𝑓 ′ ◦ 𝑔)𝑔′; (chain rule)

(iv)
(
𝑓

𝑔

) ′
=
𝑓 ′𝑔 − 𝑓 𝑔′

𝑔2

, provided 𝑔 ≠ 0; (quotient rule)

(v)
(
𝑓 −1

) ′
=

1

𝑓 ′ ◦ 𝑓 −1

; (inverse rule)
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The following examples illustrate how these rules can be applied to

obtain new derivatives:

Example 2.3.1 If 𝑓 (𝑥) = 𝑒𝑥 then 𝑓 −1(𝑥) = log 𝑥. Therefore

(log 𝑥)′ = 1

𝑒 log 𝑥
=

1

𝑥
.

Logarithms can have a different base, say 𝑎 > 0. They are denoted

log𝑎 𝑥 and form the inverse function of 𝑎𝑥 . Now 𝑎𝑥 = 𝑒𝑥 log 𝑎
, so by the

chain rule

(𝑎𝑥)′ =
(
𝑒𝑥 log 𝑎

) ′
=

(
𝑒𝑥 log 𝑎

)
log 𝑎 = 𝑎𝑥 log 𝑎.

Therefore

(log𝑎 𝑥)′ =
1

𝑎log𝑎 𝑥 log 𝑎
=

1

𝑥 log 𝑎
.

Example 2.3.2 Function 𝑓 (𝑥) = 𝑥𝛼, with 𝛼 ∈ ℝ, can be written as

𝑓 (𝑥) = 𝑒𝛼 log 𝑥
. Thus, applying the chain rule,

(𝑥𝛼)′ = 𝑒𝛼 log 𝑥 𝛼
𝑥
= 𝑥𝛼

𝛼
𝑥
= 𝛼𝑥𝛼−1.

Example 2.3.3 If 𝑓 (𝑥) = sin 𝑥 in [−𝜋/2,𝜋/2] then 𝑓 −1(𝑥) = arcsin 𝑥.

Thus,

(arcsin 𝑥)′ = 1

cos(arcsin 𝑥) .

But cos 𝑥 =
√

1 − sin
2 𝑥 in [−𝜋/2,𝜋/2], so

(arcsin 𝑥)′ = 1√
1 − sin

2(arcsin 𝑥)
=

1√
1 − 𝑥2

,

because sin(arcsin 𝑥) = 𝑥.

𝑓 (𝑥) 𝑓 ′(𝑥) 𝑓 (𝑥) 𝑓 ′(𝑥)
𝑐 0 sin 𝑥 cos 𝑥

𝑥𝛼 𝛼𝑥𝛼−1
cos 𝑥 − sin 𝑥

𝑒𝑥 𝑒𝑥 tan 𝑥
1

cos
2 𝑥

= 1 + tan
2 𝑥

𝑎𝑥 𝑎𝑥 log 𝑎 arctan 𝑥
1

1 + 𝑥2

log 𝑥
1

𝑥
arcsin 𝑥

1√
1 − 𝑥2

log𝑎 𝑥
1

𝑥 log 𝑎
arccos 𝑥

−1√
1 − 𝑥2

Table 2.1: Derivatives of most elementary

functions. Here 𝑐, 𝛼 ∈ ℝ, 𝑎 > 0.
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Exercises

Exercise 2.1 Let 𝑓 and 𝑔 be differentiable functions in ℝ. Write down

the derivative of the following functions in their respective domains:

(i) ℎ(𝑥) =
√
𝑓 (𝑥)2 + 𝑔(𝑥)2;

(ii) ℎ(𝑥) = arctan

(
𝑓 (𝑥)
𝑔(𝑥)

)
;

(iii) ℎ(𝑥) = 𝑓
(
𝑔(𝑥)

)
𝑒 𝑓 (𝑥);

(iv) ℎ(𝑥) = log

(
𝑔(𝑥) sin 𝑓 (𝑥)

)
;

(v) ℎ(𝑥) = 𝑓 (𝑥)𝑔(𝑥);

(vi) ℎ(𝑥) = 1

log

(
𝑓 (𝑥) + 𝑔(𝑥)2

) .

Exercise 2.2 Check that the following functions satisfy the specified

differential equations, where 𝑐, 𝑐1, and 𝑐2 are constants:

(i) 𝑓 (𝑥) = 𝑐

𝑥
satisfies 𝑥 𝑓 ′ + 𝑓 = 0;

(ii) 𝑓 (𝑥) = 𝑥 tan 𝑥 satisfies 𝑥 𝑓 ′ − 𝑓 − 𝑓 2 = 𝑥2
;

(iii) 𝑓 (𝑥) = 𝑐1 sin 3𝑥 + 𝑐2 cos 3𝑥 satisfies 𝑓 ′′ + 9 𝑓 = 0;

(iv) 𝑓 (𝑥) = 𝑐1𝑒
3𝑥 + 𝑐2𝑒

−3𝑥
satisfies 𝑓 ′′ − 9 𝑓 = 0;

(v) 𝑓 (𝑥) = 𝑐1𝑒
2𝑥 + 𝑐2𝑒

5𝑥
satisfies 𝑓 ′′ − 7 𝑓 ′ + 10 𝑓 = 0;

(vi) 𝑓 (𝑥) = log (𝑐1𝑒
𝑥 + 𝑒−𝑥) + 𝑐2 satisfies 𝑓 ′′ + ( 𝑓 ′)2 = 1.

Exercise 2.3 Prove the identities (valid only in the specified regions)

(i) arctan 𝑥 + arctan

1

𝑥
=

𝜋
2

, for 𝑥 > 0;

(ii) arctan

1 + 𝑥
1 − 𝑥 − arctan 𝑥 =

𝜋
4

, for 𝑥 < 1;

(iii) 2 arctan 𝑥 + arcsin

2𝑥

1 + 𝑥2

= 𝜋, for 𝑥 ≥ 1.

hint: Differentiate the equation and check one point of the specified

region.

Exercise 2.4 At which points does the graph of the function 𝑓 (𝑥) =

𝑥 + (sin 𝑥)1/3
has a vertical tangent?

Exercise 2.5 Given the function

𝑓 (𝑥) =
{ 𝑥

1 + 𝑒1/𝑥 , 𝑥 ≠ 0,

0 𝑥 = 0,

calculate the angle between the tangents on the left and on the right of

its graph at 𝑥 = 0.

Exercise 2.6 Find the sets where the function 𝑓 (𝑥) =
√
𝑥 + 2 arccos(𝑥+2)

is continuous and differentiable.

Exercise 2.7 Calculate the smallest 𝛼 for which 𝑓 (𝑥) = |𝛼𝑥2 − 𝑥 + 3| is

differentiable in ℝ.

Exercise 2.8 Given the function

𝑓 (𝑥) =

𝑎 + 𝑏𝑥2 , |𝑥| ≤ 𝑐,
1

|𝑥| , |𝑥| > 𝑐,
𝑐 > 0,
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find 𝑎 and 𝑏 so that it is continuous and differentiable in ℝ.

Exercise 2.9 Determine the sets where it is continuous and where it is

differentiable

𝑓 (𝑥) =


3 − 𝑥2

2

, 𝑥 < 1,

1

𝑥
, 𝑥 ≥ 1,



1: Why this is so is harder to explain, but

trust me

2: Again, trust me. It would take us too

long to explain this.

3: It is actually six times smaller. We’ll get

there.

Taylor Expansions 3
3.1 Taylor Polynomial

From our definition of derivative as the limit of a quotient, we can write

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
ℎ

≈ 𝑓 ′(𝑥) ⇐⇒ 𝑓 (𝑥) − 𝑓 (𝑎)
𝑥 − 𝑎 ≈ 𝑓 ′(𝑎),

or, in another words,

𝑓 (𝑥) ≈ 𝑓 (𝑎) + 𝑓 ′(𝑎)(𝑥 − 𝑎).

This approximation will be better as 𝑥 → 𝑎 and will be exact in the

limit.

Note that both 𝑓 (𝑎) and 𝑓 ′(𝑎) are constants, and so we are approximating

𝑓 by a polynomial of degree 1, a line.

Take 𝑓 (𝑥) = 𝑒𝑥 and 𝑎 = 0. What is the linear approximation of 𝑒𝑥 at 0?

The derivative of 𝑒𝑥 is itself 𝑒𝑥 which at 𝑥 = 0 is equal to 1. So 𝑒𝑥 ≈ 1+𝑥.

How good is the approximation? Take 𝑥 = 0.1 for instance. The true value

is 𝑒0.1 = 1.10517091808 . . . , so the error appears in the third decimal. In

general, the error will be of the same order of magnitude as 𝑥21
, which

means it will be some constant 𝐸2 times 𝑥2
.

But we know that 𝑒𝑥 is not linear. Can we increase the degree of the

polynomial so that the approximation is better? In other words: if we

write as approximation 1 + 𝑥 + 𝑐2𝑥
2
, what is the value that 𝑐2 needs to

take so that the approximation is good enough? Note that the error will

now be of the order of magnitude of 𝑥3
, something like 𝐸3𝑥

3
, with 𝐸3 a

constant
2

:

𝑒𝑥 = 1 + 𝑥 + 𝑐2𝑥
2 + 𝐸3𝑥

3.

Now, if we differentiate twice, we get

𝑒𝑥 = 2𝑐2 + 6𝐸3𝑥.

At 𝑥 = 0 the equation becomes 𝑐2 = 1/2. Note that, for a general function

𝑓 , this will be equal to 𝑓 ′′(0)/2. So 1 + 𝑥 + 𝑥2/2 is the polynomial of

second degree that best approximates 𝑒𝑥 . And if we substitute 𝑥 = 0.1

like before, and we get 1.105, and the error is just 0.00017, of the same

order as 0.13 = 0.001
3

We can keep adding terms. If we try to find the polynomial of third

degree that best approximates 𝑒𝑥 , we have

𝑒𝑥 = 1 + 𝑥 + 𝑥2

2

+ 𝑐3𝑥
3 + 𝐸4𝑥

4 ,
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4: This notation is called Landau’s “small

o”, in case you want to look it up.

and differentiating three times we get

𝑒𝑥 = 3 · 2𝑐3 + 4 · 3 · 2𝐸4𝑥.

Again, at 𝑥 = 0 this becomes 𝑐3 = 1/6 and, for a general 𝑓 , it is 𝑐3 =

𝑓 ′′′(0)/3!. The approximation now is 1.1051666666 . . . and the error is

only 0.0000042, or around 0.14/24.

In general, we have

𝑒𝑥 ≈ 1 + 𝑥 + 𝑥2

2!

+ 𝑥3

3!

+ · · · + 𝑥𝑛

𝑛!

.

Since we know that the remaining terms will be of the order of 𝑥𝑛+1
or

smaller, we sometimes write

𝑒𝑥 = 1 + 𝑥 + 𝑥2

2!

+ 𝑥3

3!

+ · · · + 𝑥𝑛

𝑛!

+ 𝑜(𝑥𝑛)

to mean that this approximation is exact up to terms that vanish faster

than 𝑥𝑛 .
4

This pattern that we have seen for the exponential holds for all functions

that are differentiable in a given interval, which leads to the following

definition:

Definition 3.1.1 (Taylor polynomial)The polynomial of 𝑛th degree that best
approximates the function 𝑓 at the point 𝑎 is

𝑃𝑛,𝑎(𝑥) ≡ 𝑓 (𝑎)+ 𝑓 ′(𝑎)(𝑥−𝑎)+ 𝑓 ′′(𝑎)
2!

(𝑥−𝑎)2+· · ·+ 𝑓 (𝑛)(𝑎)
𝑛!

(𝑥−𝑎)𝑛 , (3.1)

which we will refer to as the 𝑛th order Taylor polynomial of function 𝑓 at
the point 𝑎.

The error (also called the remainder) of the approximation is the difference

between the Taylor polynomial and the function, and is given by

𝑅𝑛,𝑎(𝑥) = 𝑓 (𝑥) − 𝑃𝑛,𝑎(𝑥) =
𝑓 (𝑛+1)(𝑐)
(𝑛 + 1)! (𝑥 − 𝑎)

𝑛+1 , (3.2)

where 𝑐 ∈ (𝑎, 𝑥).

Example 3.1.1 Consider the function 𝑓 (𝑥) = (1 + 𝑥)𝛼, where 𝛼 ∈ ℝ.

Then 𝑓 (0) = 1 and

𝑓 ′(𝑥) = 𝛼(1 + 𝑥)𝛼−1 , 𝑓 ′(0) = 𝛼,

𝑓 ′′(𝑥) = 𝛼(𝛼 − 1)(1 + 𝑥)𝛼−2 , 𝑓 ′′(0) = 𝛼(𝛼 − 1),
𝑓 ′′′(𝑥) = 𝛼(𝛼 − 1)(𝛼 − 2)(1 + 𝑥)𝛼−3 , 𝑓 ′′′(0) = 𝛼(𝛼 − 1)(𝛼 − 2),

...
...

𝑓 (𝑛)(𝑥) = 𝛼(𝛼 − 1) · · · (𝛼 − 𝑛 + 1)(1 + 𝑥)𝛼−𝑛 , 𝑓 (𝑛)(0) = 𝛼(𝛼 − 1) · · · (𝛼 − 𝑛 + 1).
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Therefore

(1 + 𝑥)𝛼 =1 + 𝛼𝑥 + 𝛼(𝛼 − 1)
2

𝑥2 + · · · +

+ 𝛼(𝛼 − 1) · · · (𝛼 − 𝑛 + 1)
𝑛!

𝑥𝑛 + 𝑜(𝑥𝑛) (𝑥 → 0).

There is an interesting notation for this expression derived from the

formula for the binomial coefficients. If 𝛼 ∈ ℕ,(
𝛼
𝑛

)
=

𝛼(𝛼 − 1) · · · (𝛼 − 𝑛 + 1)
𝑛!

.

Since this formula is meaningful even if 𝛼 ∈ ℝ, we use it as a definition

and thus write

(1 + 𝑥)𝛼 =

𝑛∑
𝑘=0

(
𝛼
𝑘

)
𝑥𝑘 + 𝑜(𝑥𝑛) (𝑥 → 0).

This is the famous binomial formula as it was first obtained by Newton

in 1665.

Proposed Exercise 3.1.1 Find the Taylor polynomial of degree 𝑛 and

centered at 𝑥 = 0 for sin 𝑥, cos 𝑥 and log(1 + 𝑥)?

𝑓 (𝑥) 𝑃𝑘,0(𝑥)

(1 + 𝑥)𝛼 1 + 𝛼𝑥 + 𝛼(𝛼 − 1)
2

𝑥2 + · · · + 𝛼(𝛼 − 1) · · · (𝛼 − 𝑛 + 1)
𝑛!

𝑥𝑛

log(1 + 𝑥) 𝑥 − 𝑥2

2

+ 𝑥3

3

− 𝑥4

4

+ · · · + (−1)𝑛+1
𝑥𝑛

𝑛

𝑒𝑥 1 + 𝑥 + 𝑥2

2!

+ 𝑥3

3!

· · · + 𝑥𝑛

𝑛!

sin 𝑥 𝑥 − 𝑥3

3!

+ 𝑥5

5!

− 𝑥7

7!

+ · · · + (−1)𝑛 𝑥2𝑛+1

(2𝑛 + 1)!

cos 𝑥 1 − 𝑥2

2!

+ 𝑥4

4!

− 𝑥6

6!

+ · · · + (−1)𝑛 𝑥2𝑛

(2𝑛)!

Table 3.1: Taylor polynomials of some ele-

mentary functions as 𝑥 → 0. (Here 𝛼 ∈ ℝ.)

3.2 Taylor series

Take the function 𝑓 (𝑥) = (1 − 𝑥)−1
and start calculating its Taylor polyno-

mial at 𝑥 = 0. The first derivatives are

𝑓 ′(𝑥) = (1 − 𝑥)−2 =⇒ 𝑓 ′(0) = 1,

𝑓 ′′(𝑥) = 2(1 − 𝑥)−3 =⇒ 𝑓 ′′(0) = 2,

𝑓 ′′′(𝑥) = 3!(1 − 𝑥)−4 =⇒ 𝑓 ′′′(0) = 3!,

𝑓 𝑖𝑣(𝑥) = 4!(1 − 𝑥)−5 =⇒ 𝑓 𝑖𝑣(0) = 4!,

...
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5: More precisely, this is true for this ex-

ample in ther interval (−1, 1). The reasons

for this are hard to explain without some

knowledge of complex variable.

6: In general, a power series is a series of

the form

∑∞
𝑛=0

𝑎𝑛(𝑥 − 𝑎)𝑛 , 𝑎𝑛 ∈ ℝ.

7: Especially since every summand in the

series is positive!!

There seems to be a pattern, that is, 𝑓 (𝑛) = 𝑛!. If we substitute this into

the formula for the Taylor polynomial of degree 𝑛 centered at 𝑥 = 0, we

get:

1

1 − 𝑥 = 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 + · · · + 𝑥𝑛 + 𝑓 (𝑛+1)(𝑐)
(𝑛 + 1)! 𝑥

𝑛+1.

Now, we can keep doing this forever, and as 𝑛 → ∞ the error term will

go to zero: since 𝑓 is infinitely differentiable in an interval around 𝑥 = 0
5

then the 𝑛 + 1-th derivative, 𝑓 (𝑛+1)(𝑐) will be bounded by some real

number 𝑀. But (𝑛 + 1)! → ∞ as 𝑛 → 𝑖𝑛 𝑓 𝑡𝑦, so 𝐸𝑛,0(𝑥) → 0.

This means that

1

1 − 𝑥 = 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 + · · · + 𝑥𝑛 + · · · =
∞∑
𝑛=0

𝑥𝑛 , (3.3)

where the right-hand side denotes an infite sum, which in mathematical

terms is called a series. Because this sum is made up of powers of 𝑥, we

call it a power series. There are many types of power series
6

but, because

this comes from the Taylos polynomial, we call it the Taylor series.

What we are saying here is that our function 𝑓 (𝑥) = (1 − 𝑥)−1
is exactly

equal to its Taylor series in a given interval, in this case (−1, 1). So

this means that we can understand any smooth function as an infinite

polynomial, and that we can get any information about the function we

need from this series.

Proposed Exercise 3.2.1 Can you do the same for 𝑒𝑥 , sin 𝑥, cos 𝑥 and

log(1 + 𝑥)?

Ok, so the function is identical to its Taylor series, but is this true for

all 𝑥 in the domain? If you substitute 𝑥 = 2 in Equation (3.3), and keep

adding terms, you’ll see that the sum does not approach or converge (in

mathematical terms) to the actual value of the function 1/(1 − 2) = −1
7

.

When does this happen?

We don’t have time to explain why, but a power series

∑∞
𝑛=0

𝑎𝑛(𝑥 − 𝑎)𝑛
will converge if

lim

𝑛→∞
𝑛
√
|𝑎𝑛||𝑥 − 𝑎|𝑛 < 1 ⇔

(
lim

𝑛→∞
𝑛
√
|𝑎𝑛|

)
|𝑥 − 𝑎| < 1. (3.4)

Definition 3.2.1 (Convergence radius)We can define the number 𝜌 > 0 by
the formula

1

𝜌
≡ lim

𝑛→∞
𝑛
√
|𝑎𝑛| = lim

𝑛→∞

���� 𝑎𝑛+1

𝑎𝑛

���� (3.5)

We refer to 𝜌 as the convergence radius of the series because condition (3.4)

holds for every 𝑥 such that

|𝑥 − 𝑎| < 𝜌. (3.6)

In other words, the power series
∑∞
𝑛=0

𝑎𝑛(𝑥 − 𝑎)𝑛 converges absolutely in the
interval (𝑎 − 𝜌, 𝑎 + 𝜌).
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In summary, the power series converges if 𝑥 ∈ (𝑎 − 𝜌, 𝑎 + 𝜌) and diverges

(goes to ∞) otherwise, except maybe at 𝑥 = 𝑎 ± 𝜌. At these two points

the analysis has to be done on a case-by-case basis.

Proposed Exercise 3.2.2 Find the radius of convergence and show that

the interval of convergence of the power series

1

1 − 𝑥 = 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 + · · · + 𝑥𝑛 + · · · =
∞∑
𝑛=0

𝑥𝑛

is (−1, 1). What happens at 𝑥 = 1 and 𝑥 = −1?

Example 3.2.1 Consider the Taylor expansion of 𝑓 (𝑥) = 𝑒𝑥 with

remainder. Given that 𝑓 (𝑛)(𝑥) = 𝑒𝑥 we will have

𝑒𝑥 =
𝑛∑
𝑘=0

𝑥𝑛

𝑛!

+ 𝑅𝑛,0(𝑥), 𝑅𝑛,0(𝑥) = 𝑒𝜃𝑥
𝑥𝑛+1

(𝑛 + 1)! , 0 < 𝜃 < 1.

Since the exponential is an increasing function, 𝑒𝜃𝑥 < max{1, 𝑒𝑥}
—that includes the cases 𝑥 > 0 and 𝑥 < 0. Therefore

0 < 𝑅𝑛,0(𝑥) < max{1, 𝑒𝑥}𝑥
𝑛

𝑛!

→ 𝑛∞0

for any given 𝑥 ∈ ℝ. Hence

𝑒𝑥 =
∞∑
𝑘=0

𝑥𝑛

𝑛!

.

3.3 Numerical approximations

With the expression of the remainder we can find bounds to the error that

we incur when approximating a function by its Taylor polynomial of a

certain degree. This allows us to obtain numerical values of transcendental

functions —which would otherwise be difficult to obtain. Some examples

illustrate the method.

Example 3.3.1 We know that

sin 𝑥 = 𝑥 − 𝑥3

6

+ 𝑅4,0(𝑥), 𝑅4,0(𝑥) =
cos(𝜃𝑥)

120

𝑥5 , 0 < 𝜃 < 1.

We of course ignore the value of 𝜃 (otherwise sin 𝑥 could be exactly

computed), but we know that irrespective of 𝜃 and 𝑥, | cos(𝜃𝑥)| ≤ 1.

Thus,

|𝑅4,0(𝑥)| ≤
|𝑥|5
120

.

Suppose we want to compute sin(0.1). From the previous inequality

|𝑅4,0(𝑥)| ≤ 8.3333 × 10
−8

. Now compare:

sin(0.1) = 0.09983341664 . . . , 𝑃4,0(0.1) = 0.09983333333 . . .
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The error incurred using this simple approximation is 8.3313 × 10
−8

,

very close to our estimate.

Suppose we do not want our error to be larger than 10
−5

. What is the

largest 𝑥 for which we can use this approximation? To answer this

question we simply set the estimate to the error tolerance and find |𝑥|:

|𝑥|5
120

= 10
−5 ⇒ |𝑥| = 5

√
120 × 0.1 ≈ 0.26.

Example 3.3.2 Imagine that we want to compute

√
3.8. We can do it

by expanding the function

√
4 − 𝑥 around 𝑥 = 0. Thus,

𝑓 (𝑥) =
√

4 − 𝑥, 𝑓 (0) =
√

4 = 2,

𝑓 ′(𝑥) = −1

2

√
4 − 𝑥

, 𝑓 ′(0) = −1

2

√
4

= −1

4

,

𝑓 ′′(𝑥) = −1

4(4 − 𝑥)3/2

, 𝑓 ′′(0) = −1

4 · 4
3/2

= − 1

32

,

𝑓 ′′′(𝑥) = −3

8(4 − 𝑥)5/2

.

Then √
4 − 𝑥 = 2 − 𝑥

4

− 𝑥2

64

+ 𝑅2,0(𝑥),

where

𝑅2,0(𝑥) =
−1

16(4 − 𝜃𝑥)5/2

𝑥3 , 0 < 𝜃 < 1.

If 𝑥 > 0,

|𝑅2,0(𝑥)| <
𝑥3

16(4 − 𝑥)5/2

=
𝑥3

16

(√
4 − 𝑥

)
5

.

Now we can estimate

√
3.8 = 𝑃2,0(0.2) = 2 − 0.2

4

− (0.2)2
64

= 1.949375 . . .

and use this estimation in the error bound

|𝑅2,0(𝑥)| <
(0.2)3

16(1.949375 . . . )5 ≈ 1.78 × 10
−5.

As a matter of fact,

√
3.8 = 1.949358869 . . . , 𝑃2,0(0.2) = 1.949375,

the difference being 1.61 × 10
−5

.
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Exercises

Exercise 3.1 Write the Taylor polynomial 𝑃5,0(𝑥) for these functions:

(i) 𝑒𝑥 sin 𝑥;

(ii) 𝑒−𝑥
2

cos 2𝑥;

(iii) sin 𝑥 cos 2𝑥;

(iv) 𝑒𝑥 log(1 − 𝑥);
(v) sin

2 𝑥;

(vi)

1

1 − 𝑥3

.

Exercise 3.2 Write the polynomial 𝑥4 − 5𝑥3 + 𝑥2 − 3𝑥 + 4 in powers of

𝑥 − 4.

hint: Note that, if 𝑓 is a polynomial of degree 𝑛, the 𝑛th degree Taylor

polynomial of 𝑓 centered at 𝑎 is exactly identical to 𝑓 .

Exercise 3.3 Write the Taylor polynomial 𝑃𝑛,𝑎(𝑥) for these functions

around the specified 𝑎:

(i) 𝑓 (𝑥) = 1/𝑥 around 𝑎 = −1;

(ii) 𝑓 (𝑥) = 𝑥𝑒−2𝑥
around 𝑎 = 0;

(iii) 𝑓 (𝑥) = (1+𝑒𝑥)2 around 𝑎 = 0;

(iv) 𝑓 (𝑥) = sin 𝑥 around 𝑎 = 𝜋.

Exercise 3.4 Use a Taylor polynomial of the specified degree to provide

an approximation to these numbers, and give an upper bound for the

error incurred:

(i)

1√
1.1

, degree 3;

(ii)
3

√
28, degree 2.

(iii) log(3/2), degree 4.

Exercise 3.5 Given the function 𝑓 (𝑥) = cos 𝑥 + 𝑒𝑥 ,

(i) find its Taylor polynomial 𝑃3,0(𝑥);
(ii) estimate an upper bound for the error incurred if −1/4 ≤ 𝑥 ≤ 1/4.

Exercise 3.6 What is the smallest degree Taylor polynomial necessary to

approximate the function 𝑓 (𝑥) = 𝑒𝑥 in [−1, 1] with at least three exact

decimal places?

Exercise 3.7 Expand in power series the following functions, specifying

the domain of validity of those expansions:

(i) 𝑓 (𝑥) = sin
2 𝑥;

(ii) 𝑓 (𝑥) = log

√
1 + 𝑥
1 − 𝑥 ;

(iii) 𝑓 (𝑥) = 𝑥

𝑎 + 𝑏𝑥 ;

(iv) 𝑓 (𝑥) = 1

2 − 𝑥2

;
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4.1 Local Extrema

We will see here a set of results related to the local behaviour of a function

(i.e., the behaviour within intervals). To begin with, we need to define

local maxima and minima.

We say that a function 𝑓 has a local maximum at a point 𝑎 of its domain,

if there is some interval (𝑎 − 𝛿, 𝑎 + 𝛿) such that 𝑓 (𝑥) ≤ 𝑓 (𝑎) for all

𝑥 ∈ (𝑎 − 𝛿, 𝑎 + 𝛿).

We say that a function 𝑓 has a local minimum at a point 𝑎 of its domain,

if there is some interval (𝑎 − 𝛿, 𝑎 + 𝛿) such that 𝑓 (𝑥) ≥ 𝑓 (𝑎) for all

𝑥 ∈ (𝑎 − 𝛿, 𝑎 + 𝛿).

Local maxima and minima are collectively called local extrema. If local

extrema remain extrema for all 𝑥 in the domain of 𝑓 , they are absolute
extrema.

Theorem 4.1.1 (Derivatives at local extrema) If 𝑓 has a local extremum at
a point 𝑎 where it is differentible then 𝑓 ′(𝑎) = 0.

However:

Example 4.1.1 Consider the function 𝑓 (𝑥) = |𝑥(1 − 𝑥)|. We know that

𝑥(1 − 𝑥) ≥ 0 if 0 ≤ 𝑥 ≤ 1, and 𝑥(1 − 𝑥) < 0 if 𝑥 < 0 or 𝑥 > 1. Then we

can rewrite

𝑓 (𝑥) =
{
𝑥(1 − 𝑥), 0 ≤ 𝑥 ≤ 1,

𝑥(𝑥 − 1), 𝑥 < 0 or 𝑥 > 1.

Let us compute the derivative,

𝑓 ′(𝑥) =
{

1 − 2𝑥, 0 < 𝑥 < 1,

2𝑥 − 1, 𝑥 < 0 or 𝑥 > 1.

The derivative at 𝑥 = 0 and 𝑥 = 1 does not exists because, being

𝑓 (0) = 0 and 𝑓 (𝑥) = 𝑥(𝑥 − 1) for 𝑥 < 0,

lim

𝑥→0
−

𝑓 (𝑥) − 𝑓 (0)
𝑥 − 0

= lim

𝑥→0
−

𝑥(𝑥 − 1)
𝑥

= lim

𝑥→0
−
(𝑥 − 1) = −1.

However, since 𝑓 (𝑥) = 𝑥(1 − 𝑥) for 𝑥 > 0,

lim

𝑥→0
+

𝑓 (𝑥) − 𝑓 (0)
𝑥 − 0

= lim

𝑥→0
+

𝑥(1 − 𝑥)
𝑥

= lim

𝑥→0
+
(1 − 𝑥) = 1.

Since both one-sided limits are different the limit does not exist. For

𝑥 = 1 the argument is similar.

Now to find the local extrema we need to look for the solutions of
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1: This result is also known as the mean
value theorem.

𝑓 ′(𝑥) = 0. This equation boils down to 2𝑥 = 1, whose solution is 𝑥 = 1

2
.

Figure 4.1 presents a plot of 𝑓 (𝑥). One can clearly see that 𝑥 = 1

2
is

indeed a local maximum —albeit not absolute, because there are points

where 𝑓 (𝑥) > 𝑓 (1/2)—; however, we can also see that 𝑥 = 0 and 𝑥 = 1

are local minima, but they are not contained in the equation 𝑓 ′(𝑥) = 0.

(Incidentally, these minima are both absolute.)

There is no contradiction with the theorem though, because, as we

have just seen, the function is not differentiable at those points —a

premise of the theorem.

This example brings about the point that, when looking for extrema,

we need to check not only the solutions of 𝑓 ′(𝑥) = 0, but also the points

where 𝑓 ′(𝑥) does not exist.

Figure 4.1: Plot of the function 𝑓 (𝑥) =

|𝑥(1 − 𝑥)|.

Remark 4.1.1 Notice also that 𝑓 ′(𝑐) = 0 does not imply that 𝑐 is an

extremum. For instance take 𝑓 (𝑥) = 𝑥3
. Clearly 𝑓 ′(0) = 0, however

there is no extremum at 𝑥 = 0 because 𝑓 (𝑥) > 0 for 𝑥 > 0 and 𝑓 (𝑥) < 0

for 𝑥 < 0. We will see later how to characterise maxima and minima

using higher-order derivatives.

From the zeroth-degree Taylor polynomial, we know that 𝑓 (𝑏) − 𝑓 (𝑎) =
𝑓 ′(𝑐)(𝑏 − 𝑎) where 𝑐 ∈ (𝑎, 𝑏)1 . From this we can conclude:

Corollary 4.1.2 (i) If 𝑓 ′(𝑥) = 0 for all 𝑥 ∈ (𝑎, 𝑏) then 𝑓 is constant in
(𝑎, 𝑏).

(ii) If 𝑓 ′(𝑥) = 𝑔′(𝑥) for all 𝑥 ∈ (𝑎, 𝑏) then 𝑓 (𝑥) = 𝑔(𝑥) + 𝑘 in (𝑎, 𝑏),
with 𝑘 ∈ ℝ a constant.

(iii) If 𝑓 ′(𝑥) > 0 for all 𝑥 ∈ (𝑎, 𝑏) then 𝑓 is strictly increasing in (𝑎, 𝑏).
(iv) If 𝑓 ′(𝑥) < 0 for all 𝑥 ∈ (𝑎, 𝑏) then 𝑓 is strictly decreasing in (𝑎, 𝑏).

These resuls are useful in identifying the nature of extrema, as this

example illustrates:

Example 4.1.2 Find the absolute extrema of the function 𝑓 (𝑥) =

2𝑥5/3 + 5𝑥2/3
in the interval [−8, 1].
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There are four steps to solve a problem like this:

(1) Find the set where 𝑓 ′(𝑥) exists, and solve the equation 𝑓 ′(𝑥) = 0

within that set.

(2) Take all solutions of 𝑓 ′(𝑥) = 0 along with the points where 𝑓 ′(𝑥)
does not exist.

(3) Check whether any of those point is a local extremum by checking

the sign of 𝑓 ′ on their left and on their right.

(4) Compare the value of 𝑓 (𝑥) in all those points as well as the values

at the extremes of the interval. Select the largest and the smallest

and identify the absolute extrema.

In the case we are dealing with here

𝑓 ′(𝑥) = 10

3

(𝑥2/3 + 𝑥−1/3) = 10

3

(𝑥 + 1)𝑥−1/3.

This function is well defined for all 𝑥 ≠ 0. At 𝑥 = 0 the derivative does

not exists because the limit

lim

𝑥→0

2𝑥5/3 + 5𝑥2/3

𝑥
= lim

𝑥→0

(
2𝑥2/3 + 5𝑥−1/3

)
diverges.

Now, the solution of 𝑓 (𝑥) = 0 is 𝑥 = −1, and 𝑓 ′(𝑥) > 0 for 𝑥 < −1

(notice that 𝑥−1/3 < 0 whenever 𝑥 < 0), but 𝑓 ′(𝑥) < 0 for −1 < 𝑥 < 0.

The function thus increases on the left of 𝑥 = −1 and decreases on the

right, therefore there is a local maximum at 𝑥 = −1.

As for 𝑥 = 0, 𝑓 ′(𝑥) < 0 for −1 < 𝑥 < 0, but 𝑓 ′(𝑥) > 0 for 𝑥 > 0. Thus

there is a local minimum at 𝑥 = 0.

That is all for local extrema. Concerning absolute extrema we need to

compute

𝑓 (−1) = 3, 𝑓 (0) = 0, 𝑓 (−8) = −44, 𝑓 (1) = 7.

So the absolute maximum is at 𝑥 = 1 (the rightmost extreme of the

interval) and the absolute minimum is at 𝑥 = −8 (the leftmost extreme

of the interval).

Figure 4.2 illustrates what we have just found.

Figure 4.2: Plot of the function 𝑓 (𝑥) =

2𝑥5/3 + 5𝑥2/3
.



4 Local Behavior of Functions 33

4.2 Convexity and Concavity

We saw in Corollary 4.1.2 that the sign of 𝑓 ′(𝑥) determines wether the

function is increasing (positive) or decreasing (negative) at 𝑥, and The-

orem 4.1.1 showed that at local extrema the function satisfies 𝑓 ′(𝑥) = 0

(provided it is differentiable). In its second formulation —with the

remainder— Taylor’s theorem provides a more detailed information

about the local behaviour of a function which has higher order deriva-

tives.

Before getting into it, we need to characterise another qualitative feature

of functions: whether their slope increases or decreases. This feature is

called convexity.

We say that 𝑓 is convex at 𝑥 = 𝑎 if it is locally above its tangent at that

point, i.e., 𝑓 (𝑥) > 𝑓 (𝑎) + 𝑓 ′(𝑎)(𝑥 − 𝑎) for all 0 < |𝑥 − 𝑎| < 𝜖, for some

𝜖 > 0.

Likewise, we say that it is concave at 𝑥 = 𝑎 if it is locally below its tangent

a that point, i.e., 𝑓 (𝑥) < 𝑓 (𝑎) + 𝑓 ′(𝑎)(𝑥 − 𝑎) for all 0 < |𝑥 − 𝑎| < 𝜖, for

some 𝜖 > 0.

Finally, we say that 𝑓 has an inflection point at 𝑥 = 𝑎 if the sign of

𝑓 (𝑥) − 𝑓 (𝑎) − 𝑓 ′(𝑎)(𝑥 − 𝑎) is different for 𝑥 < 𝑎 and for 𝑥 > 𝑎.

Figure 4.3 illustrates these three behaviours.

convex concave inflec�on point

Figure 4.3: Local behaviour of a function

with respect to its tangent at a point (con-

vexity).

Suppose that a function 𝑓 can be differentiated several times (posibly

infinitely many) in a certain interval and that the first nonzero derivative

beyond the first at 𝑥 = 𝑎 is 𝑓 (𝑛)(𝑎). We can use Taylor’s theorem —with

Lagrange’s remainder— to write

𝑓 (𝑥) = 𝑓 (𝑎) + 𝑓 ′(𝑎)(𝑥 − 𝑎) + 𝑓 (𝑛)(𝑐)
𝑛!

(𝑥 − 𝑎)𝑛 ,

where 𝑐 = (1 − 𝜃)𝑎 + 𝜃𝑥 with 0 < 𝜃 < 1. One important point to stress

here is that, since 𝑓 (𝑛)(𝑎) ≠ 0 —so it is either positive or negative—, when

𝑥 is sufficiently close to 𝑎 —and so is 𝑐— 𝑓 (𝑛)(𝑐) will have the same sign

as 𝑓 (𝑛)(𝑎). This is key for the argument to come.

Since we can write the Taylor expansion as

𝑓 (𝑥) − 𝑓 (𝑎) − 𝑓 ′(𝑎)(𝑥 − 𝑎) = 𝑓 (𝑛)(𝑐)
𝑛!

(𝑥 − 𝑎)𝑛 ,

the sign of the left-hand side —which decides the convexity— will be

determined by sign of the product 𝑓 (𝑛)(𝑐)(𝑥 − 𝑎)𝑛 or, given what we have

just argued, by the sign of the product 𝑓 (𝑛)(𝑎)(𝑥 − 𝑎)𝑛 .
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Now, if 𝑛 is odd, the sign of 𝑓 (𝑛)(𝑎) is irrelevant because (𝑥 − 𝑎)𝑛 has a

different sign for 𝑥 < 𝑎 and for 𝑥 > 𝑎. Therefore 𝑎 will be an inflection
point.

If 𝑛 is even then (𝑥 − 𝑎)𝑛 > 0 for all 𝑥 ≠ 𝑎. Then the sign is determined

by that of 𝑓 (𝑛)(𝑎). We will then have two possibilities:

(a) 𝑓 (𝑛)(𝑎) > 0, and then the function is convex, or

(b) 𝑓 (𝑛)(𝑎) < 0, and then the function is concave.

If added to that we have that 𝑓 ′(𝑎) = 0, then for 𝑛 odd nothing changes

—hence 𝑥 = 𝑎 still is an inflection point—, but for 𝑛 even the point 𝑥 = 𝑎

is a local extremum. A convex extremum ( 𝑓 (𝑛)(𝑎) > 0) is a local minimum
and a concave extremum ( 𝑓 (𝑛)(𝑎) < 0) is a local maximum.

All these results are summarised in Table 4.1.

𝑛 sign of 𝑓 (𝑛)(𝑎) 𝑓 ′(𝑎) ≠ 0 𝑓 ′(𝑎) = 0

odd +/− inflection point inflection point

even + convex local minimum

even − convex local maximum

Table 4.1: Classification of the local be-

haviour of a function according to the sign

of the first nonzero derivative 𝑓 (𝑛)(𝑎) with

𝑛 > 1.

4.3 Function graphing

All the local information provided by the derivatives can be gathered to

sketch a qualitative graph of any function 𝑓 (𝑥). The steps to follow in

graphing a function are these (some of them might not be necessary):

1. Domain: Determine precisely the set of points where the function

𝑓 (𝑥) is defined.

2. Symmetries: It is helpful to know whether the function has one of

these symmetries:

(a) Even: 𝑓 (−𝑥) = 𝑓 (𝑥).
(b) Odd: 𝑓 (−𝑥) = − 𝑓 (𝑥).
(c) Periodic: 𝑓 (𝑥 + 𝑐) = 𝑓 (𝑥) for some 𝑐 > 0.

In the first two cases it is enough to represent the function for 𝑥 ≥ 0

(for 𝑥 < 0 it is represented using the symmetry). In the last case

it is enough to represent the function in the interval [0, 𝑐] (or any

other interval of the same lenght) and then reproduce its graph

periodically.

Other symmetries might be possible (e.g., 𝑓 (𝑎 + 𝑥) = ± 𝑓 (𝑎 − 𝑥),
i.e., 𝑓 is even/odd around the vertical axis 𝑥 = 𝑎).

3. Continuity and differentiability: Discontinuities (“jumps”) and

points where 𝑓 ′(𝑥) does not exists (“cusps”) are relevant features

of the function, and might be useful in detecting local extrema.

4. Zeroes: Finding the solutions of 𝑓 (𝑥) = 0 determines where 𝑓

crosses the X axis. These points separate regions where the sign of

𝑓 remains constant.

5. Growth: Finding the solutions of 𝑓 ′(𝑥) = 0 determines the regions

where 𝑓 increases ( 𝑓 ′(𝑥) > 0) or decreases ( 𝑓 ′(𝑥) > 0). Usually this

is enough to locate the extrema of 𝑓 .



4 Local Behavior of Functions 35

6. Convexity: The convex/concave regions are usually determined

by the sign of 𝑓 ′′(𝑥). Inflections points can be inferred from that

information (as points where the concavity changes).

7. Asymptotes: These are known curves (usually straight lines) which

𝑓 (𝑥) approaches when it gets close to some points or to ±∞. The

main ones are:

(a) Vertical asymptotes: These are the vertical straight lines through

the points 𝑥 = 𝑎 where lim

𝑥→𝑎±
𝑓 (𝑥) = ±∞.

(b) Horizontal asymptotes: These are the horizontal straight lines

𝑦 = ℓ where ℓ is such that lim

𝑥→±∞
𝑓 (𝑥) = ℓ .

(c) Inclined asymptotes: We say that 𝑦 = 𝑚𝑥 + 𝑏 is an asymptote of

𝑓 (𝑥) when 𝑥 → ±∞ if

𝑚 = lim

𝑥→±∞

𝑓 (𝑥)
𝑥

, 𝑏 = lim

𝑥→±∞
[ 𝑓 (𝑥) − 𝑚𝑥].

(In other words, 𝑓 (𝑥) = 𝑚𝑥 + 𝑏 + 𝑜(1) (𝑥 → ±∞).)
Other types of asymptote are possible. In general, the curve 𝑦 = 𝑔(𝑥)
is an asymptote of 𝑓 when 𝑥 → ±∞ if 𝑓 (𝑥) = 𝑔(𝑥)+𝑜(1) (𝑥 → ±∞).

Figure 4.4: Sketch of 𝑓 (𝑥) = 3𝑥2 + 𝑥 + 1

𝑥 + 2

.

Example 4.3.1 Sketch the graph of

𝑓 (𝑥) = 3𝑥2 + 𝑥 + 1

𝑥 + 2

.

The domain of this function is ℝ − {−2} (because the denominator

vanishes at that point.) It has no obvious symmetries and, being a

rational function, it is continuous and differentiable (an infinite number

of times) in all its domain.

We can obtain the derivative as

𝑓 ′(𝑥) = (6𝑥 + 1)(𝑥 + 2) − (3𝑥2 + 𝑥 + 1)
(𝑥 + 2)2 =

6𝑥2 + 13𝑥 + 2 − 3𝑥2 − 𝑥 − 1

(𝑥 + 2)2 =
3𝑥2 + 12𝑥 + 1

(𝑥 + 2)2 .

This derivative vanishes when 3𝑥2 + 12𝑥 + 1 = 0. The roots of this
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parabola are 𝑥 = −2 ±
√

11/3, i.e., 𝑥1 ≈ −0.085, 𝑥2 ≈ −3.91. For 𝑥 < 𝑥2

and 𝑥 > 𝑥1 function 𝑓 increases ( 𝑓 ′ > 0) and for 𝑥2 < 𝑥 < 𝑥1 it

decreases ( 𝑓 ′ < 0).

𝑓 has no zeros because 3𝑥2 + 𝑥 + 1 > 0 for all 𝑥 ∈ ℝ (the parabola has

no roots). So 𝑓 (𝑥) < 0 for 𝑥 < −2 and 𝑓 (𝑥) > 0 for 𝑥 > −2.

It is not necessary to analyse the concavity, as it can be inferred from

all the other information, including that of the asymptotes. We know

there is a vertical asymptote at 𝑥 = −2 because

lim

𝑥→−2
−
𝑓 (𝑥) = −∞, lim

𝑥→−2
+
𝑓 (𝑥) = +∞.

There are no horizontal asymptotes because 𝑓 diverges when 𝑥 → ±∞.

However, we can express the polynomial 𝑃(𝑥) = 3𝑥2 + 𝑥 + 1 in powers

of 𝑥 + 2 using Taylor’s polynomial, because 𝑃2,−2(𝑥) = 𝑃(𝑥). As

𝑃(𝑥) = 3𝑥2 + 𝑥 + 1, 𝑃(−2) = 11,

𝑃′(𝑥) = 6𝑥 + 1, 𝑃′(−2) = −11,

𝑃′′(𝑥) = 6, 𝑃′′(−2) = 6,

we have 𝑃(𝑥) = 11 − 11(𝑥 + 2) + 3(𝑥 + 2)2. Therefore

𝑓 (𝑥) = 3𝑥2 + 𝑥 + 1

𝑥 + 2

=
11 − 11(𝑥 + 2) + 3(𝑥 + 2)2

𝑥 + 2

=
11

𝑥 + 2

− 11 + 3(𝑥 + 2) = 11

𝑥 + 2

− 5 + 3𝑥

= 3𝑥 − 5 + 𝑜(1) (𝑥 → ±∞),

i.e., 𝑦 = 3𝑥 − 5 is an inclined asymptote both when 𝑥 → ±∞.

𝑓 (𝑥) is represented in Figure 4.4.

Figure 4.5: Sketch of 𝑓 (𝑥) = 4𝑥

𝑥2 + 9

.

Example 4.3.2 Sketch the graph of

𝑓 (𝑥) = 4𝑥

𝑥2 + 9

.

The domain of this function isℝ, and it is continuous and differentiable
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everywhere. It is an odd function because

𝑓 (−𝑥) = 4(−𝑥)
(−𝑥)2 + 9

= − 4𝑥

𝑥2 + 9

= − 𝑓 (𝑥),

so we only need to care about the region 𝑥 ≥ 0. As every odd continuous

function 𝑓 (0) = 0, and this is the only point where 𝑓 croses the X axis.

Besides 𝑓 (𝑥) > 0 for 𝑥 > 0.

Its derivative is

𝑓 ′(𝑥) = 4(𝑥2 + 9) − 4𝑥 · 2𝑥

(𝑥2 + 9)2 =
4𝑥2 + 36 − 8𝑥2

(𝑥2 + 9)2 =
4(9 − 𝑥2)
(𝑥2 + 9)2 .

Thus, in 𝑥 ≥ 0 we have 𝑓 ′(𝑥) > 0 for 𝑥 < 3 and 𝑓 ′(𝑥) < 0 for 𝑥 > 3.

The function grows up to 𝑥 = 3, where it has a local maximum, and

then decreases beyond that point.

As for the second derivative,

𝑓 ′′(𝑥) = −8𝑥(𝑥2 + 9)2 − (36 − 4𝑥2)2(𝑥2 + 9)2𝑥
(𝑥2 + 9)4 =

−8𝑥(𝑥2 + 9) − (36 − 4𝑥2)4𝑥
(𝑥2 + 9)3

=
8𝑥3 − 216𝑥

(𝑥2 + 9)3 =
8𝑥(𝑥2 − 27)
(𝑥2 + 9)3 ,

so 𝑓 is concave ( 𝑓 ′′ < 0) for 𝑥 <
√

27 = 3

√
3 and convex ( 𝑓 ′′ > 0) for

𝑥 > 3

√
3. At 𝑥 = 3

√
3 there is an inflection point.

Finally, there are no vertical asymptotes ( 𝑓 is defined in the whole ℝ),

but since lim

𝑥→∞
𝑓 (𝑥) = 0, the X axis is a horizontal asymptote.

𝑓 (𝑥) is represented in Figure 4.5.
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Exercises

Exercise 4.1 Let 𝑓 (𝑥) = |𝑥3(𝑥 − 4)| − 1.

(a) Find where 𝑓 is continuous and where it is differentiable.

(b) Determine its extrema.

(c) Prove that 𝑓 (𝑥) = 0 has a unique solution in [0, 1].

Exercise 4.2 Solve these optimisation problems:

(a) A factory that produces tomato sauce wants to can it in cylindrical

cans of a fixed volume 𝑉 . Determine their radius 𝑟 and height ℎ so

that their fabrication consumes the least possible material.

(b) A recipient with square bottom and no cap must be covered by

a thin layer of lead. If the volume of the recipient must be 32

litres, which dimensions should it have so that it requires the least

possible amount of lead?

(c) Find two numbers 𝑥, 𝑦 > 0 such that 𝑥 + 𝑦 = 20 and 𝑥2𝑦3
is

maximum.

(d) Find the rectangle inscribed in the ellipse (𝑥/𝑎)2 + (𝑦/𝑏)2 = 1 with

its sides parallel to the axes of the ellipse, such that its area is

maximum.

(e) With a tangent to the parabola 𝑦 = 6− 𝑥2
and the positive axes one

can make a triangle. Determine which of those triangles has the

smallest area and compute it.

(f) We need to construct a box with no cap with the shape of a

parallelepiped whose base is an equilateral triangle, and whose

volume is 128 cm
3
. If the material for the base costs 0.20 euros/cm

2

and that for the lateral surfaces costs 0.10 euros/cm
2
, what are the

dimensions of the cheapest such box?

(g) A right triangle ABC has vertex A at the origin, vertex B on the

circumference (𝑥 − 1)2 + 𝑦2 = 1 —side AB is the hypothenuse of

the triangle— and side AC on the horizontal axis. Calculate the

location of C that maximises the area of the triangle.

(h) Let P = (𝑥0 , 𝑦0) be a point of the first quadrant (𝑥0 , 𝑦0 > 0).

A straight line through P cuts the axes at A = (𝑥0 + 𝛼, 0) and

B = (0, 𝑦0 + 𝛽). Calculate 𝛼 > 0 and 𝛽 > 0 so as to minimise

(i) the length of segment AB;

(ii) the sum of the lengths of OA and OB;

(iii) the area of the triangle OAB.

hint: Triangle similarity implies 𝛽 = 𝑥0𝑦0/𝛼.

Exercise 4.3 Prove the following inequalities:

(a) (1 + 𝑥)𝑎 ≥ 1 + 𝑎𝑥 for all 𝑎 ≥ 1, 𝑥 > −1 (Bernoulli’s inequality);

(b) 𝑒𝑥 ≥ 1 + 𝑥 for all 𝑥 ∈ ℝ;

(c)

𝑥

1 + 𝑥 ≤ log(1 + 𝑥) ≤ 𝑥 for all 𝑥 > −1.

hint: In all cases try to minimise the appropriate function.

Exercise 4.4 Determine the number of solutions of the following equa-

tions in the specified domains:
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(i) 𝑥7 + 4𝑥 = 3 in ℝ;

(ii) 𝑥5 = 5𝑥 − 6 in ℝ;

(iii) 𝑥4 − 4𝑥3 = 1 in ℝ;

(iv) sin 𝑥 = 2𝑥 − 1 in ℝ;

(v) 𝑥𝑥 = 2 in [1,∞);
(vi) 𝑥2 = log

1

𝑥 in (1,∞).

hint: In order to cross the 𝑥-axis twice, a differentiable function 𝑓 has

to first increase and then decrease (or vice versa). This means that its

derivative has to be zero at a point 𝑐 between any two roots.

Exercise 4.5 Calculate the Taylor polynomial𝑃4,0(𝑥) for 𝑓 (𝑥) = 1+𝑥3
sin 𝑥.

Given the result, does 𝑓 have a local maximum, minimum or inflection

point at 𝑥 = 0?

Exercise 4.6 Prove that if 𝑓 and 𝑔 are twice differentiable, convex func-

tions, and 𝑓 is increasing, then ℎ = 𝑓 ◦ 𝑔 is convex.

Exercise 4.7 Discuss the convexity of the following functions:

(i) 𝑓 (𝑥) = (𝑥 − 2)𝑥2/3
;

(ii) 𝑓 (𝑥) = |𝑥|𝑒 |𝑥|;
(iii) 𝑓 (𝑥) = log(𝑥2 − 6𝑥 + 8).

Exercise 4.8

(i) Sketch the graph of the function 𝑓 (𝑥) = 𝑥 + log |𝑥2 − 1|.
(ii) Based on the previous graph, plot function 𝑔(𝑥) = |𝑥| + log |𝑥2 − 1|

and ℎ(𝑥) =
��𝑥 + log |𝑥2 − 1|

��
.

Exercise 4.9 Sketch a plot of the following functions:

(i) 𝑓 (𝑥) = 𝑒𝑥 sin 𝑥;

(ii) 𝑓 (𝑥) =
√
𝑥2 − 1 − 1;

(iii) 𝑓 (𝑥) = 𝑥𝑒1/𝑥
;

(iv) 𝑓 (𝑥) = 𝑥2𝑒𝑥 ;

(v) 𝑓 (𝑥) = (𝑥 − 2)𝑥2/3
;

(vi) 𝑓 (𝑥) = (𝑥2 − 1) log

(
1 + 𝑥
1 − 𝑥

)
;

(vii) 𝑓 (𝑥) = 𝑥

log 𝑥
;

(viii) 𝑓 (𝑥) = 𝑥2 − 1

𝑥2 + 1

;

(ix) 𝑓 (𝑥) = 𝑒1/𝑥

1 − 𝑥 ;

(x) 𝑓 (𝑥) = log[(𝑥 − 1)(𝑥 − 2)];

(xi) 𝑓 (𝑥) = 𝑒𝑥

𝑥(𝑥 − 1) ;

(xii) 𝑓 (𝑥) = 2 sin 𝑥 + cos 2𝑥;

(xiii) 𝑓 (𝑥) = 𝑥 − 2√
4𝑥2 + 1

;

(xiv) 𝑓 (𝑥) =
√
|𝑥 − 4|;

(xv) 𝑓 (𝑥) = 1

1 + 𝑒𝑥 ;

(xvi) 𝑓 (𝑥) = 𝑒2𝑥

𝑒𝑥 − 1

;

(xvii) 𝑓 (𝑥) = 𝑒−𝑥 sin 𝑥;

(xviii) 𝑓 (𝑥) = 𝑥2

sin

1

𝑥
.

Exercise 4.10 Draw the graph of the following functions:

(i) 𝑓 (𝑥) = min{log |𝑥3 − 3|, log |𝑥 + 3|};

(ii) 𝑓 (𝑥) = 1

|𝑥| − 1

− 1

|𝑥 − 1| ;

(iii) 𝑓 (𝑥) = 1

1 + |𝑥| −
1

1 + |𝑥 − 𝑎| , (𝑎 > 0);

(iv) 𝑓 (𝑥) = 𝑥
√
𝑥2 − 1;
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(v) 𝑓 (𝑥) = arctan log |𝑥2 − 1|;

(vi) 𝑓 (𝑥) = 2 arctan 𝑥 + arcsin

(
2𝑥

1 + 𝑥2

)
.



Integration 5
Integration is a device that was invented to calculate areas of figures

limited by curved sides. The idea can be traced back at least to Archimedes.

He is well known —among many other things— for calculating the area

of a circle of unit diameter, 𝐴, in terms of its perimeter, 𝜋, obtaining

the celebrated formula 𝐴 = 𝜋/4. He did that by using two sequence

of polygons, both circumscribed to and inscribed in the circumference,

and then taking the limit of the number of sides going to infinity (see

Figure 5.1).

Figure 5.1: Archimedes’s construction to

obtain the relation between the area and

the perimeter of a circle.

5.1 The Definite Integral

A similar idea was employed to obtain the area under more complicated

curves. If we define a signed area as in Figure 5.2(a) (i.e., it adds if

𝑓 (𝑥) > 0 and substracts if 𝑓 (𝑥) < 0), the problem is how to calculate

the total area enclosed by a curved within a given interval. Following

Archimedes, one way to estimate that area is to approximate it as a sum

of rectangles, as in Figure 5.2(b). In the limit when the width of these

rectangles goes to zero we obtain the value of the seeked area.

(a) (b)

Figure 5.2: (a) Area “under” a curve: above

the X axis area has a positive sign and

below the X axis has a negative sign. (b)

Approximations to that area as sums of

thiner and thiner rectangles.

Example 5.1.1 As an example of this procedure, let us calculate, using

this method, the area below the curve 𝑓 (𝑥) = 𝑥2
within the interval

[0, 𝑎]. To do that, we divide the interval in 𝑛 rectangles of width 𝑎/𝑛
and heights (𝑎𝑘/𝑛)2, with 𝑘 = 1, 2, . . . , 𝑛. The areas of these rectangles

will then be 𝑎3𝑘2/𝑛3
. This yields the following approximation to the
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area:

𝐴𝑛 =
𝑎3

𝑛3

+ 2
2𝑎3

𝑛3

+ 3
2𝑎3

𝑛3

+ · · · + 𝑛2𝑎3

𝑛3

=
𝑎3

𝑛3

(
1

2 + 2
2 + · · · + 𝑛2

)
.

It is a know result that

1
2 + 2

2 + · · · + 𝑛2 =
𝑛(𝑛 + 1)(2𝑛 + 1)

6

,

thus

𝐴𝑛 = 𝑎3
𝑛(𝑛 + 1)(2𝑛 + 1)

6𝑛3

=
𝑎3(2𝑛3 + 3𝑛2 + 𝑛)

6𝑛3

.

Therefore

𝐴 = lim

𝑛→∞
𝐴𝑛 = lim

𝑛→∞

(
𝑎3

3

+ 𝑎3

2𝑛
+ 𝑎3

6𝑛2

)
=
𝑎3

3

is the area we are seeking.

What we have found in the previous example is called the Riemann
integral, because it was Riemann who developed this approach. Rie-

mann’s theory deals with more general partitions of a given interval,

and not only on equidistant ones, but we will not see that here. So, as

before, assume we divide the interval [𝑎, 𝑏] in 𝑛 segments, each of width

(𝑏 − 𝑎)/𝑛. Then,

Definition 5.1.1 (Definite integral) Let the points 𝑥0 = 𝑎 < 𝑥1 < 𝑥2 <
𝑥3 < · · · < 𝑥𝑛 = 𝑏 divide the interval [𝑎, 𝑏] into 𝑛 even subintervals, of
width 𝑤 = 𝑏−𝑎

𝑛 . The definite integral of 𝑓 from 𝑎 to 𝑏 is

∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = lim

𝑛→∞

(
𝑓 (𝑥0) + 𝑓 (𝑥1) + 𝑓 (𝑥2) + · · · + 𝑓 (𝑥𝑛−1)

)
𝑤

= lim

𝑛→∞

𝑛−1∑
𝑘=0

𝑓 (𝑥𝑘)𝑤

If the limit exists, then 𝑓 is said to be (Riemann) integrable on the interval
[𝑎, 𝑏].

It is customary to use Leibniz’s notation

∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥 which reminds the

definition of the integral as a sum (hence the sign

∫
) of the areas of

rectagles of with 𝑑𝑥 and height 𝑓 (𝑥), for all 𝑎 ≤ 𝑥 ≤ 𝑏.

We have seen that this limit exists for 𝑓 (𝑥) = 𝑥2
. What other functions

are integrable?

Theorem 5.1.1 If 𝑓 is continuous in [𝑎, 𝑏] then it is integrable in [𝑎, 𝑏].

The idea of the proof of this result is that continuous functions have

the property that the difference between their maximum and minimum

values in a closed interval is smaller the smaller the interval.

The class of functions that are Riemann integrable is quite a bit larger

than the set of continuous functions; for instance, monotonous functions
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are integrable, but also functions that are both bounded (so that there

exists an 𝑀 < ∞ such that | 𝑓 (𝑥)| < 𝑀 for all x over which we wish

to integrate) and piecewise continuous (continuous except for a finite

number of discontinuities) are integrable. We will be concerned primarily

with continuous functions in this text; knowing that continuous functions

are Riemann integrable will therefore suffice for the most part.

Geometric interpretation of the integral

The geometric interpretation of the integral is straightforward: a definite

integral can thus be interpreted as a difference of areas. If 𝐴+ denotes the

total area of the region above the 𝑥-axis and below the graph of 𝑓 (where

𝑓 ≥ 0) and 𝐴− denotes the total area of the region below the 𝑥-axis and

above the graph of 𝑓 (where 𝑓 ≤ 0), then∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = 𝐴+ − 𝐴−.

Example 5.1.2 Find the value of

∫
2𝜋

0

sin 𝑥 𝑑𝑥 by interpreting it as the

signed area of an appropriately chosen region.

The function 𝑓 (𝑥) = sin 𝑥 is symmetric about 𝑥 = 𝜋. It follows from

this symmetry that the area of the region below the graph of 𝑓 and

above the x-axis between 0 and 𝜋 (denoted by 𝐴+) is the same as the

area of the region above the graph of 𝑓 and below the x-axis between

𝜋 and 2𝜋 (denoted by 𝐴−). Therefore, 𝐴+ = 𝐴− and∫
2𝜋

0

sin 𝑥 𝑑𝑥 = 𝐴+ − 𝐴− = 0.

5.2 Properties of the integral

Theorem 5.2.1 Let 𝑓 and 𝑔 be two integrable functions in [𝑎, 𝑏]. Then the
following properties hold:

(i)
∫ 𝑏

𝑎

(𝛼 𝑓 + 𝛽𝑔) = 𝛼

∫ 𝑏

𝑎

𝑓 + 𝛽

∫ 𝑏

𝑎

𝑔 for all 𝛼, 𝛽 ∈ ℝ linearity

(ii)
∫ 𝑏

𝑎

𝑓 ≤
∫ 𝑏

𝑎

𝑔 whenever 𝑓 ≤ 𝑔 in [𝑎, 𝑏] boundedness

(iii) | 𝑓 | is integrable in [𝑎, 𝑏] and

�����∫ 𝑏

𝑎

𝑓

����� ≤ ∫ 𝑏

𝑎

| 𝑓 | absolute

integrability

A consequence of (ii) is that if 𝑓 ≥ 0 then

∫ 𝑏

𝑎

𝑓 ≥ 0.

Another consequence is that if 𝑀 = sup

𝑥∈[𝑎,𝑏]
𝑓 (𝑥) and 𝑚 = inf

𝑥∈[𝑎,𝑏]
𝑓 (𝑥),

then

𝑚(𝑏 − 𝑎) ≤
∫ 𝑏

𝑎

𝑓 ≤ 𝑀(𝑏 − 𝑎). (5.1)
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Theorem 5.2.2 (Interval additivity) Given 𝑎 < 𝑏 < 𝑐, function 𝑓 is
integrable in [𝑎, 𝑐] if and only if it is integrable in [𝑎, 𝑏] and [𝑏, 𝑐]. Besides∫ 𝑐

𝑎

𝑓 =

∫ 𝑏

𝑎

𝑓 +
∫ 𝑐

𝑏

𝑓 . (5.2)

Notice that this formula implies∫ 𝑏

𝑎

𝑓 =

∫ 𝑐

𝑎

𝑓 −
∫ 𝑐

𝑏

𝑓 ,

so interval additivity will be preserved beyond the constraint 𝑎 < 𝑏 < 𝑐

if we define ∫ 𝑏

𝑐

𝑓 = −
∫ 𝑐

𝑏

𝑓 . (5.3)

Example 5.2.1 Show that

0 ≤
∫ 𝜋

0

sin 𝑥 𝑑𝑥 ≤ 𝜋

Note that 0 ≤ sin 𝑥 ≤ 1 for 𝑥 ∈ [0,𝜋]. Using Property (6), we find that∫ 𝜋

0

sin 𝑥 𝑑𝑥 ≥ 0.

Using the properties of the integrals, we obtain∫ 𝜋

0

sin 𝑥 𝑑𝑥 ≤ (1)(𝜋) = 𝜋.

5.3 The Fundamental Theorem of Calculus

The basic idea of the connection between integrals and derivatives —the

essence of the fundamental theorem of calculus— is this. Let us denote

𝐴(𝑥) the (signed) area between the X axis and the function 𝑓 within the

interval [𝑎, 𝑥]. Suppose that we increase the inverval by a very small

amount ℎ. In practical terms, we are enlarging the area by adding almost

a rectangle of width ℎ and height ≈ 𝑓 (𝑥). In other words,

𝐴(𝑥 + ℎ) ≈ 𝐴(𝑥) + 𝑓 (𝑥)ℎ ⇒ 𝑓 (𝑥) ≈ 𝐴(𝑥 + ℎ) − 𝐴(𝑥)
ℎ

.

If we now take the limit ℎ → 0 we obtain the connection 𝐴′(𝑥) = 𝑓 (𝑥).
This is the basic result that both Newton and Leibniz were aware of and

which renders calculus such a powerful tool. The rigorous statement is

as follows:

Theorem 5.3.1 (First fundamental theorem of calculus) If 𝑓 is continuous

in [𝑎, 𝑏] then 𝐹(𝑥) =
∫ 𝑥

𝑎

𝑓 (𝑡) 𝑑𝑡 is differentiable in (𝑎, 𝑏) and 𝐹′(𝑥) = 𝑓 (𝑥).
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The take-home message of this theorem is that integrals of functions are

primitives of those functions. Here is the connection between differentia-

tion and integration. From now on, calculating the area between the X

axis and a given curve 𝑓 (𝑥) is as simple as finding the right anti-derivative

(also called primitive) of 𝑓 . Actually, the problem is even easier: any

primitive will do, because of this second version of the fundamental

theorem of calculus:

Theorem 5.3.2 (Second fundamental theorem of calculus (Barrow’s

rule)) If 𝑓 is continuous in [𝑎, 𝑏] and 𝐺 is any primitive of 𝑓 in (𝑎, 𝑏), then∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 = 𝐺(𝑏) − 𝐺(𝑎).

Example 5.3.1 Evaluate ∫
2

−1

(𝑥2 − 3𝑥) 𝑑𝑥.

Solution: Note that 𝑓 (𝑥) = 𝑥2−3𝑥 is continuous on [−1, 2]. We need to

find an antiderivative of 𝑓 (𝑥) = 𝑥2 − 3𝑥; for instance, 𝐹(𝑥) = 1

3
𝑥3 − 3

2
𝑥2

is an antiderivative of 𝑓 (𝑥) since 𝐹′(𝑥) = 𝑓 (𝑥). We then must evaluate

𝐹(2) − 𝐹(−1):

𝐹(2) = 1

3

· 2
3 − 3

2

· 2
2 =

8

3

− 6 =
−10

3

,

𝐹(−1) = 1

3

· (−1)3 − 3

2

· (−1)2 =
−1

3

− 3

2

=
−11

6

.

We find that

𝐹(2) − 𝐹(−1) = −10

3

−
(
−11

6

)
=

−96

6

=
−32

6

=
−16

3

.

Therefore, ∫
2

−1

(𝑥2 − 3𝑥) 𝑑𝑥 = 𝐹(2) − 𝐹(−1) = −16

3

.

Table 5.1 shows some basic primitives that will be useful for our calcula-

tions.

Here are some important additional special cases:∫
𝑔′(𝑥)
𝑔(𝑥) 𝑑𝑥 = log |𝑔(𝑥)| + 𝑐,

∫
𝑔′(𝑥)[𝑔(𝑥)]𝛼 𝑑𝑥 =

𝑔(𝑥)𝛼+1

𝛼 + 1

, 𝛼 ≠ −1,

(5.4)∫
𝑔′(𝑥)

1 + 𝑔(𝑥)2 𝑑𝑥 = arctan 𝑔(𝑥) + 𝑐,
∫

𝑔′(𝑥)√
1 − 𝑔(𝑥)2

𝑑𝑥 = arcsin 𝑔(𝑥) + 𝑐.

(5.5)
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𝑓 (𝑥) 𝐹(𝑥) 𝑓 (𝑥) 𝐹(𝑥) 𝑓 (𝑥) 𝐹(𝑥)

𝑥𝛼 (𝛼 ≠ −1)
𝑥𝛼+1

𝛼 + 1

sin 𝑥 − cos 𝑥
1

1 + 𝑥2

arctan 𝑥

𝑥−1
log |𝑥| cos 𝑥 sin 𝑥

1√
1 − 𝑥2

arcsin 𝑥

𝑒𝑥 𝑒𝑥 sinh 𝑥 cosh 𝑥
1

cos
2 𝑥

tan 𝑥

𝑎𝑥
𝑎𝑥

log 𝑎
cosh 𝑥 sinh 𝑥

1

cosh
2 𝑥

tanh 𝑥

Table 5.1: Primitives 𝐹(𝑥) of some elemen-

tary functions 𝑓 (𝑥) (up to the additive con-

stant) as obtained by reversing Table 2.1.

Here 𝛼 ∈ ℝ, 𝑎 > 0.

Remark 5.3.1 Often primitives are referred to as “indefinite integrals”

and denoted

∫
𝑓 (𝑥) 𝑑𝑥, whereas integrals of the form

∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 are

called “definite integrals”.

Corollary 5.3.3 If 𝑓 is continuous in [𝑎, 𝑏] and 𝑔1 , 𝑔2 are differentiable in
(𝑎, 𝑏) then

𝐻(𝑥) =
∫ 𝑔2(𝑥)

𝑔1(𝑥)
𝑓 (𝑡) 𝑑𝑡 (5.6)

is also differentiable in (𝑎, 𝑏) and

𝐻′(𝑥) = 𝑓
(
𝑔2(𝑥)

)
𝑔′

2
(𝑥) − 𝑓

(
𝑔1(𝑥)

)
𝑔′

1
(𝑥). (5.7)

Example 5.3.2 If

𝐹(𝑥) =
∫ 𝑥3

0

cos 𝑡 𝑑𝑡,

then 𝐹′(𝑥) = 3𝑥2
cos(𝑥3).

Applying Barrow’s rule we can obtain particular versions of the integra-

tion by parts and change of variable theorems:

Theorem 5.3.4 (Integration by parts) If 𝑓 and 𝑔 are two differentiable
functions in (𝑎, 𝑏), then∫ 𝑏

𝑎

𝑓 (𝑥)𝑔′(𝑥) 𝑑𝑥 = 𝑓 (𝑥)𝑔(𝑥)
���𝑏
𝑎
−

∫ 𝑏

𝑎

𝑓 ′(𝑥)𝑔(𝑥) 𝑑𝑥. (5.8)

The symbol in the right-hand side is a short-hand for

𝑓 (𝑥)𝑔(𝑥)
���𝑏
𝑎
= 𝑓 (𝑏)𝑔(𝑏) − 𝑓 (𝑎)𝑔(𝑎). (5.9)

Theorem 5.3.5 (Change of variable) If 𝑔 is continuous in [𝑎, 𝑏] and
differentiable in (𝑎, 𝑏), and 𝑓 is continuous in 𝑔

(
[𝑎, 𝑏]

)
, then∫ 𝑔(𝑏)

𝑔(𝑎)
𝑓 (𝑢) 𝑑𝑢 =

∫ 𝑏

𝑎

𝑓
(
𝑔(𝑥)

)
𝑔′(𝑥) 𝑑𝑥. (5.10)
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Example 5.3.3 Let us calculate the area of a circle of radius 𝑎. The

equation of its circumference is 𝑥2 + 𝑦2 = 𝑎2
, from which we obtain

𝑦 = ±
√
𝑎2 − 𝑥2

. Clearly the area between the X axis and the function

𝑓 (𝑥) =
√
𝑎2 − 𝑥2

within the interval [−𝑎, 𝑎] is half the area we want to

calculate, therefore

𝐴 = 2

∫ 𝑎

−𝑎

√
𝑎2 − 𝑥2 𝑑𝑥.

We can introduce the variable 𝑡 = 𝑥/𝑎, or 𝑥 = 𝑎𝑡, so that

𝑑𝑥

𝑑𝑡
= 𝑎, and

the limits 𝑥 = −𝑎 → 𝑡 = −1 and 𝑥 = 𝑎 → 𝑡 = 1. Thus

𝐴 = 2

∫
1

−1

√
𝑎2 − 𝑎2𝑡2 𝑎 𝑑𝑡 = 2𝑎2

∫
1

−1

√
1 − 𝑡2 𝑑𝑡.

Let us now introduce a second change of variable: 𝑡 = sin𝜃. Then

𝑑𝑡

𝑑𝜃
= cos𝜃, and the limits 𝑡 = −1 → 𝜃 = −𝜋/2 and 𝑡 = 1 → 𝜃 = 𝜋/2.

The integral then becomes

𝐴 = 2𝑎2

∫ 𝜋/2

−𝜋/2

cos
2 𝜃 𝑑𝜃 = 𝑎2

∫ 𝜋/2

−𝜋/2

(1 + cos 2𝜃) 𝑑𝜃

= 𝑎2

(
𝜋 + 1

2

sin 2𝜃
���𝜋/2

−𝜋/2︸      ︷︷      ︸
=0

)
= 𝜋𝑎2.

5.4 Applications of the integral

Cumulative change

Consider a population whose size at time 𝑡, 𝑡 ≥ 0, is 𝑁(𝑡) and that grows

at a rate 𝑟(𝑡). Referring back to interpretations of the derivative in Section

2.2, we can say that:

𝑑𝑁

𝑑𝑡
= 𝑟(𝑡) (5.11)

because
𝑑𝑁
𝑑𝑡 is the rate of growth of the population represented using

derivatives. Using the Fundamental Theorem of Calculus, we can see

that, since 𝑁(𝑡) is an antiderivative of the function 𝑟(𝑡),

𝑁(𝑡) =
∫ 𝑡

0

𝑟(𝑠) 𝑑𝑠 + 𝐶 (5.12)

for some constant 𝐶. (We choose 0 as the lower limit of integration for

convenience—the lower limit is arbitrary, and any value could be used.)

If we know the function 𝑟(𝑡), then (5.12) can be used to calculate 𝑁(𝑡),
but this only gives us 𝑁(𝑡) up to an unknown constant 𝐶. To calculate 𝐶,

we need to know the value of 𝑁(𝑡) at a specific time; that is, we need an

initial condition. The initial condition, say 𝑁(0) = 𝑁0 for some known

value of 𝑁0, and the differential equation (5.11) together make an initial
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value problem

𝑑𝑁

𝑑𝑡
= 𝑟(𝑡) and 𝑁(0) = 𝑁0

whose solution is:

𝑁(𝑡) =
∫ 𝑡

0

𝑟(𝑠) 𝑑𝑠 + 𝑁0. (5.13)

Example 5.4.1 A population grows at rate 𝑟(𝑡) = 𝑡2/2 and at time 𝑡 = 0

contains 200 individuals. Find the size of the population (number of

individuals) as a function of time.

Let 𝑁(𝑡) represent the size of the population at time 𝑡. Then we are

given that

𝑑𝑁

𝑑𝑡
=

1

2

𝑡2

and

𝑁(0) = 200.

We can solve this initial value problem using (5.13):

𝑁(𝑡) =
∫ 𝑡

0

1

2

𝑠2 𝑑𝑠 + 200

=
1

6

𝑡3 + 200.

Averages

To find the average value of a function between two points 𝑎 and 𝑏,

we can take samples of the function at equal distances. To formulate

this notation mathematically, we evenly divide [𝑎, 𝑏] using 𝑛 + 1 points:

𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < · · · < 𝑥𝑛 = 𝑏 with each pair of points separated by

a distance 𝑤 = 𝑏−𝑎
𝑛 (that is, 𝑥𝑘 − 𝑥𝑘−1 = 𝑤 for 𝑘 = 1, 2, . . . , 𝑛). We then

measure the concentration at the right extreme of the interval, that is, at

𝑥1 , 𝑥2 , . . . , 𝑥𝑛 . The average value of 𝑓 is then

𝑓 =
1

𝑛
( 𝑓 (𝑥1) + 𝑓 (𝑥2) + · · · + 𝑓 (𝑥𝑛))

This is similar to our equation for the integral, defined in Section 5.1

using sums. If we multiply and divide by 𝑤 = (𝑏 − 𝑎)/𝑛, we have

𝑓 =
𝑤

𝑤𝑛
( 𝑓 (𝑥1)+ 𝑓 (𝑥2)+· · ·+ 𝑓 (𝑥𝑛)) =

1

𝑏 − 𝑎 𝑤( 𝑓 (𝑥1)+ 𝑓 (𝑥2)+· · ·+ 𝑓 (𝑥𝑛)),

since 𝑤𝑛 = 𝑏 − 𝑎. When 𝑛 → ∞ the product on the right becomes an

integral (see 5.1.1) and:

𝑓 =
1

𝑏 − 𝑎

∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥.

That is, the average concentration can be expressed as an integral over

𝑐(𝑥) between 𝑎 and 𝑏, divided by the length of the interval [𝑎, 𝑏]:
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Definition 5.4.1 (Average Value of a Function) Assume that 𝑓 (𝑥) is a
continuous function on [𝑎, 𝑏]. The average value of 𝑓 on the interval [𝑎, 𝑏] is

𝑓 =
1

𝑏 − 𝑎

∫ 𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥.

Example 5.4.2 Rainfall in Los Angeles varies seasonally, with most

rain occurring at the beginning and end of the year. We might model

this seasonal variation using the following formula for the monthly

precipitation (in inches/month):

𝑝(𝑡) = 1.6 + 1.6 cos(2𝜋𝑡)

where 𝑡 is the fraction of the year elapsed since January 1, so 𝑡 = 0 is

January 1, 𝑡 = 0.5 is exactly halfway through the year (which turns out

to be July 2), 𝑡 = 0.75 is three- quarters of the way through the year

(which turns out to be October 1). What is the average monthly rainfall

in one year?

We use the definition of average usgin integrals:

𝑃 =
1

1 − 0

∫
1

0

(1.6 + 1.6 cos(2𝜋𝑡)) 𝑑𝑡

= 1.6

∫
1

0

𝑑𝑡 + 1.6

∫
1

0

cos(2𝜋𝑡) 𝑑𝑡

= 1.6 + 1.6

[
sin(2𝜋𝑡)

2𝜋

]
1

0

Since sin(0) = sin(2𝜋) = 0, we have

𝑃 = 1.6.
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Exercises

Exercise 5.1

(a) Prove that if 𝑓 is odd then

∫ 𝑎

−𝑎
𝑓 (𝑥) 𝑑𝑥 = 0.

(b) Prove that if 𝑓 is even then

∫ 𝑎

−𝑎
𝑓 (𝑥) 𝑑𝑥 = 2

∫ 𝑎

0

𝑓 (𝑥) 𝑑𝑥.

(c) Calculate the integral

∫
10

6

sin

(
sin

(
(𝑥 − 8)3

) )
𝑑𝑥.

Exercise 5.2 Approximate the following integrals using 𝑛 equal subin-

tervals:

(a)

∫
1

−1

(1 − 𝑥2) 𝑑𝑥 with 𝑛 = 5 subintervals.

(b)

∫
2

−1

𝑒−𝑥 𝑑𝑥 with 𝑛 = 3 subintervals.

(c)

∫ 𝜋

0

sin 𝑥 𝑑𝑥 with 𝑛 = 4 subintervals.

In all cases, compare the result with the exact one.

Exercise 5.3 Use an area formula from geometry to find the value of

each integral by interpreting it as the (signed) area under the graph of an

appropriately chosen function.

(a)

∫
3

−3

|𝑥| 𝑑𝑥
(b)

∫
3

−3

√
9 − 𝑥2 𝑑𝑥

(c)

∫
5

2

( 𝑥
2
− 4) 𝑑𝑥

(d)

∫
2

−1

(2 − |𝑥|) 𝑑𝑥

Exercise 5.4 Calculate 𝐹(𝑥) =

∫ 𝑥

−1

𝑓 (𝑡) 𝑑𝑡, with −1 ≤ 𝑥 ≤ 1, for the

following functions:

(i) 𝑓 (𝑥) = |𝑥 − 1/2|;

(ii) 𝑓 (𝑥) =
{
−1, −1 ≤ 𝑥 < 0,

1, 0 ≤ 𝑥 ≤ 1;

(iii) 𝑓 (𝑥) =
{
𝑥2 , −1 ≤ 𝑥 < 0,

𝑥2 − 1, 0 ≤ 𝑥 ≤ 1;

(iv) 𝑓 (𝑥) =
{

1, −1 ≤ 𝑥 ≤ 0,

𝑥 + 1, 0 < 𝑥 ≤ 1;

(v) 𝑓 (𝑥) =


1 + 𝑥, −1 ≤ 𝑥 ≤ − 1

2
,

1

2
, − 1

2
< 𝑥 < 1

2
,

1 − 𝑥, 1

2
≤ 𝑥 ≤ 1;

Exercise 5.5 Calculate the derivative of the following functions:

(i) 𝐹(𝑥) =
∫ 𝑥3

𝑥2

𝑒 𝑡

𝑡
𝑑𝑡;

(ii) 𝐹(𝑥) =
∫ 𝑥3

−𝑥3

𝑑𝑡

1 + sin
2 𝑡

;

(iii) 𝐹(𝑥) =
∫ 𝑥

0

𝑥2 𝑓 (𝑡) 𝑑𝑡, with 𝑓 continuous in ℝ;

Exercise 5.6 Find the absolute maximum and minimum in the interval

[1,∞) of the function

𝑓 (𝑥) =
∫ 𝑥−1

0

(
𝑒−𝑡

2 − 𝑒−2𝑡
)
𝑑𝑡.
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hint: lim

𝑥→∞

∫ 𝑥

0

𝑒−𝑡
2

𝑑𝑡 =
√
𝜋/2.

Exercise 5.7 Prove that the equation∫ 𝑥

0

𝑒 𝑡
2

𝑑𝑡 = 1

has a unique solution in ℝ and that it can be found in the interval (0, 1).

Exercise 5.8 Let 𝑓 (𝑥) be a continuous function such that 𝑓 (𝑥) > 0 for all

0 ≤ 𝑥 ≤ 1, and consider the function

𝐹(𝑥) = 2

∫ 𝑥

0

𝑓 (𝑡) 𝑑𝑡 −
∫

1

𝑥

𝑓 (𝑡) 𝑑𝑡.

Determine how many solutions the equation 𝐹(𝑥) = 0 has in [0, 1].

Exercise 5.9 Let 𝑓 (𝑥) =
∫ 𝑥

−1/𝑥

𝑑𝑡

𝑎2 + 𝑡2 . Determine, without computing

the integral, for which values of 𝑎 the function 𝑓 is constant.

Exercise 5.10

(a) Use the change of variable 𝑡 = sin
2 𝜃 to calculate the integral∫

1

0

arcsin

√
𝑡 𝑑𝑡.

(b) Consider the function

𝑓 (𝑥) =
∫

sin
2 𝑥

0

arcsin

√
𝑡 𝑑𝑡 +

∫
cos

2 𝑥

0

arccos

√
𝑡 𝑑𝑡.

Prove that 𝑓 (𝑥) = 𝑐, a constant, in the interval [0,𝜋/2].
(c) Determine the value of the constant 𝑐.

Exercise 5.11 Let 𝑓 : [−1, 1] ↦→ ℝ be any integrable function.

(a) Prove that ∫ 𝜋

0

𝑥 𝑓 (sin 𝑥) 𝑑𝑥 =
𝜋
2

∫ 𝜋

0

𝑓 (sin 𝑥) 𝑑𝑥.

Hint: Do the change of variables 𝑦 = 𝜋 − 𝑥.

(b) Calculate the integral ∫ 𝜋

0

𝑥 sin 𝑥

1 + cos
2 𝑥

𝑑𝑥.

Exercise 5.12 Consider a population whose size at time 𝑡 is 𝑁(𝑡) and

whose growth obeys the initial-value problem

𝑑𝑁

𝑑𝑡
= 𝑒−𝑡

with 𝑁(0) = 100.

(a) Find 𝑁(𝑡) by solving the initial-value problem.
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(b) Compute the cumulative change in population size between 𝑡 = 0

and 𝑡 = 5.

Exercise 5.13 A particle moves along the 𝑥-axis with velocity

𝑣(𝑡) = −(𝑡 − 2)2 + 1

for 0 ≤ 𝑡 ≤ 5. Assume that the particle is at the origin at time 0.

(a) Use the graph of 𝑣(𝑡) to determine when the particle moves to the

left and when it moves to the right.

(b) Find the location 𝑠(𝑡) of the particle at time 𝑡 for 0 ≤ 𝑡 ≤ 5. Give a

geometric interpretation of 𝑠(𝑡) in terms of the graph of 𝑣(𝑡).

Exercise 5.14 The average daily temperature (measured in Fahrenheit)

in New York City can be approximated by the following function of the

time of year 𝑡. (Here, 𝑡 measures the fraction of the year that has elapsed

since January 1.)

𝑇(𝑡) = 57.5 − 22.5 cos(2𝜋𝑡).

(a) What is the average daily temperature averaged over the course of

one year?

(b) Explain how you could get your answer in part (b) without doing

any integrations.

(c) What is the average summer temperature? You may assume that

summer corresponds to the interval 0.47 ≤ 𝑡 ≤ 0.73. You will need

to use a calculator to evaluate your answer.



1: Note that in this chapter we have

switched our notation for the derivative

with respect to 𝑡 to ¤𝑥, which is standard in

books on dynamical systems.

2: Because infinitely many functions have

the same derivative 𝑟𝑁 .

Differential Equations 6
We have already seen some examples of differential equations. In this

chapter we will learn how to study them in more depth.

We will start with differential equations of the form:

¤𝑥 =
𝑑𝑥

𝑑𝑡
= 𝑓 (𝑥)

Here 𝑥(𝑡) is a real-valued function of time 𝑡, and 𝑓 (𝑥) is a smooth real-

valued function of 𝑥.
1

We’ll call such equations one-dimensional or

first-order systems.

We will not allow 𝑓 to depend explicitly on time. Time-dependent or

"nonautonomous" equations of the form ¤𝑥 = 𝑓 (𝑥, 𝑡) are more compli-

cated, because one needs two pieces of information, 𝑥 and 𝑡, to predict

the future state of the system.

6.1 Exponential Growth

We will start with the equation for exponential growth, that we derived

in Section 2.2:

¤𝑁 =
𝑑𝑁

𝑑𝑡
= 𝑟𝑁, (6.1)

where 𝑟 is the per capita growth rate of the population.

This differential equation is called separable because we can put all the

terms that are functions of 𝑁 only on one side, and all the terms that are

functions of 𝑡 on the other. We can then integrate both sides:∫
𝑑𝑁/𝑑𝑡
𝑁

𝑑𝑡 =

∫
𝑟 𝑑𝑡.

A primitive for the left-hand side is log𝑁 , and so we have

log𝑁(𝑡) = 𝑟𝑡 + 𝐶 =⇒ 𝑁(𝑡) = 𝐶𝑒𝑟𝑡 .

Now, in order to know the value of 𝐶 we have to impose additional

information.
2

In many cases, this additional information is the value of

𝑁(𝑡) at 𝑡 = 0, which we call 𝑁(0) = 𝑁0. A differential equation plus an

initial condition is usually called an initial value problem. In order to do

this, we take 𝑡 = 0 in the solution and solve for 𝐶:

𝑁(0) = 𝐶𝑒𝑟·0 =⇒ 𝐶 = 𝑁0.

Finally, the solution to the initial value problem is

𝑁(𝑡) = 𝑁0𝑒
𝑟𝑡

(6.2)

If 𝑟 > 0, the population grows exponentially without stop. However,

if 𝑟 < 0 the population decays exponentially until it gets to 0. We say
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3: If 𝑟 = 0 the population stays constant

at 𝑁0, because the derivative 𝑟𝑁 is always

0.

4: We haven’t introduced vectors yet, but

perhaps you have seen them as “arrows”

in high-school math. That idea will do for

now.

that 𝑁 = 0 is a fixed point of the system because
¤𝑁(0) = 0. That is, the

derivative does not change, and therefore the system remains in the same

position forever. If 𝑟 > 0, the population goes away from the fixed point,

but if 𝑟 < 0 it goes towards it.
3

How can we understand the behavior of the system in general? Do we

always need to find the solution of the differential equation?

6.2 A Geometric Way of Thinking

Pictures are often more helpful than formulas for analyzing nonlinear

systems. Here we illustrate this point by a simple example. Along the

way we will introduce one of the most basic techniques of dynamics:

interpreting a differential equation as a vector field.
4

Consider the following nonlinear differential equation:

¤𝑥 = sin 𝑥. (6.3)

To emphasize our point about formulas versus pictures, we have chosen

one of the few nonlinear equations that can be solved in closed form.

This differential equation is also separable, and so we can put all the

terms that are functions of 𝑥 only on one side, and all the terms that are

functions of 𝑡 on the other. We can then integrate both sides:∫
𝑑𝑥

𝑑𝑡

1

sin 𝑥
𝑑𝑡 =

∫
1𝑑𝑡,

which implies (you can look up the integral in a table)

𝑡 = − log | csc 𝑥 + cot 𝑥| + 𝐶

To evaluate the constant 𝐶, suppose that 𝑥 = 𝑥0 at 𝑡 = 0. Then

𝐶 = ln (csc 𝑥0 + cot 𝑥0) .

Hence the solution is

𝑡 = ln

(
csc 𝑥0 + cot 𝑥0

csc 𝑥 + cot 𝑥

)
. (6.4)

This result is exact, but a headache to interpret. For example, can you

answer the following questions?

1. Suppose 𝑥0 = 𝜋
4
; describe the qualitative features of the solution

𝑥(𝑡) for all 𝑡 > 0. In particular, what happens as 𝑡 → ∞?

2. For an arbitrary initial condition 𝑥0, what is the behavior of 𝑥(𝑡) as

𝑡 → ∞?

Think about these questions for a while, to see that formula (6.4) is not

transparent. In contrast, a graphical analysis of (6.3) is clear and simple,

as shown in Figure 6.1. We think of 𝑡 as time, 𝑥 as the position of an

imaginary particle moving along the real line, and ¤𝑥 as the velocity of

that particle. Then the differential equation ¤𝑥 = sin 𝑥 represents a vector

field on the line: it dictates the velocity vector ¤𝑥 at each 𝑥. To sketch the

vector field, it is convenient to plot ¤𝑥 versus 𝑥, and then draw arrows on

the 𝑥-axis to indicate the corresponding velocity vector at each 𝑥. The
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x(
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Figure 6.2: Solution of the differential

equation ¤𝑥 = sin 𝑥 with initial condition

𝑥(0) = 𝜋/4.

arrows point to the right when ¤𝑥 > 0 and to the left when ¤𝑥 < 0. This

picture is often called phase protrait.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

x
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1.5
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0.0

0.5

1.0
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2.0

dx dt

Figure 6.1: Phase protrait of the differen-

tial equation ¤𝑥 = sin 𝑥, showing the fixed

points (stable in black, unstable in white)

and the direction of the flow.

Here’s a more physical way to think about the vector field: imagine that

fluid is flowing steadily along the 𝑥-axis with a velocity that varies from

place to place, according to the rule ¤𝑥 = sin 𝑥. As shown in Figure 6.1,

the flow is to the right when 𝑥 > 0 and to the left when 𝑥 < 0. At points

where ¤𝑥 = 0, there is no flow; such points are therefore called fixed points.

You can see that there are two kinds of fixed points in Figure 6.1: solid

black dots represent stable fixed points (often called attractors or sinks,

because the flow is toward them) and open circles represent unstable

fixed points (also known as repellers or sources).

Armed with this picture, we can now easily understand the solutions to

the differential equation ¤𝑥 = sin 𝑥. We just start our imaginary particle at

𝑥0 and watch how it is carried along by the flow.

This approach allows us to answer the questions above as follows:

1. Figure 6.1 shows that a particle starting at 𝑥0 = 𝜋
4

moves to the

right faster and faster until it crosses 𝑥 = 𝜋
2

(where sin 𝑥 reaches its

maximum). Then the particle starts slowing down and eventually

approaches the stable fixed point 𝑥 = 𝜋 from the left. Thus, the

qualitative form of the solution is as shown in Figure 6.2. Note

that the curve is convex at first, and then concave; this corresponds

to the initial acceleration for 𝑥 < 𝜋
2

followed by the deceleration

toward 𝑥 = 𝜋.

2. The same reasoning applies to any initial condition 𝑥0. Figure 6.1

shows that if 𝑥 > 0 initially, the particle heads to the right and

asymptotically approaches the nearest stable fixed point. Similarly,

if 𝑥 < 0 initially, the particle approaches the nearest stable fixed

point to its left. If 𝑥 = 0, then 𝑥 remains constant.

A picture can’t tell us certain quantitative things: for instance, we don’t

know the time at which the speed ¤𝑥 is greatest. But in many cases

qualitative information is what we care about, and then pictures are

fine.
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6.3 Fixed Points and Stability

The appearance of the phase portrait is controlled by the fixed points 𝑥∗,
defined by 𝑓 (𝑥∗) = 0; they correspond to stagnation points of the flow.

In Figure 6.1, the solid black dot is a stable fixed point (the local flow is

toward it) and the open dot is an unstable fixed point (the flow is away

from it).

In terms of the original differential equation, fixed points represent equi-

librium solutions (sometimes called steady, constant, or rest solutions),

since if 𝑥 = 𝑥∗ initially, then 𝑥(𝑡) = 𝑥∗ for all time. An equilibrium is

defined to be stable if all sufficiently small disturbances away from it

damp out in time. Thus stable equilibria are represented geometrically by

stable fixed points. Conversely, unstable equilibria, in which disturbances

grow in time, are represented by unstable fixed points.

Example 6.3.1 Find all fixed points for ¤𝑥 = 𝑥2 − 1, and classify their

stability.

Here 𝑓 (𝑥) = 𝑥2 − 1. To find the fixed points, we set 𝑓 (𝑥∗) = 0 and solve

for 𝑥∗. Thus 𝑥∗ = ±1. To determine stability, we plot 𝑥2 − 1 and then

sketch the vector field. The flow is to the right where 𝑥2 − 1 > 0 and to

the left where 𝑥2 − 1 < 0. Thus 𝑥∗ = −1 is stable, and 𝑥∗ = 1 is unstable.

Note that the definition of stable equilibrium is based on small distur-

bances; certain large disturbances may fail to decay. Here, all small

disturbances to 𝑥∗ = −1 will decay, but a large disturbance that sends

𝑥 to the right of 𝑥 = 1 will not decay—in fact, the phase point will be

repelled out to +∞. To emphasize this aspect of stability, we sometimes

say that 𝑥∗ = −1 is locally stable, but not globally stable.

Example 6.3.2 Sketch the phase portrait corresponding to ¤𝑥 = 𝑥−cos 𝑥,

and determine the stability of all the fixed points.

One approach would be to plot the function 𝑓 (𝑥) = 𝑥 − cos 𝑥 and then

sketch the associated vector field. This method is valid, but it requires

you to figure out what the graph of 𝑥 − cos 𝑥 looks like.

There’s an easier solution, which exploits the fact that we know how

to graph 𝑔 = 𝑥 and 𝑦 = cos 𝑥 separately. We plot both graphs on the

same axes and then observe that they intersect in exactly one point (do

it!).

This intersection corresponds to a fixed point, since 𝑥∗ = cos 𝑥∗ and

therefore 𝑓 (𝑥∗) = 0. Moreover, when the line lies above the cosine

curve, we have 𝑥 > cos 𝑥 and so ¤𝑥 > 0: the flow is to the right. Similarly,

the flow is to the left where the line is below the cosine curve. Hence

𝑥∗ is the only fixed point, and it is unstable. Note that we can classify

the stability of 𝑥∗, even though we don’t have a formula for 𝑥∗ itself!
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6.4 Population Growth

The exponential growth seen in Equation (6.1) cannot go on forever. To

model the effects of overcrowding and limited resources, population

biologists and demographers often assume that the per capita growth

rate
1

𝑁
𝑑𝑁
𝑑𝑡 decreases when 𝑁 becomes sufficiently large. For small 𝑁 , the

growth rate equals 𝑟, just as before. However, for populations larger than

a certain carrying capacity 𝐾, the growth rate actually becomes negative;

the death rate is higher than the birth rate.

A mathematically convenient way to incorporate these ideas is to assume

that the per capita growth rate
1

𝑁
𝑑𝑁
𝑑𝑡 decreases linearly with 𝑁 .

This leads to the logistic equation first suggested to describe the growth

of human populations by Verhulst in 1838:

¤𝑁 = 𝑟𝑁

(
1 − 𝑁

𝐾

)
(6.5)

Proposed Exercise 6.4.1 Solve the differential equation (6.5) analyti-

cally, taking the initial condition 𝑁(0) = 𝑁0. The following fact will be

useful:

1

𝑁(1 − 𝑁/𝐾) =
1

𝑁
− 1

𝑁 − 𝐾

0 2 4 6 8 10 12
N

2

1

0

1

2

dN dt

Figure 6.3: Phase protrait of the differen-

tial equation
¤𝑁 = 𝑟𝑁(1 − 𝑁/𝐾), showing

the fixed points (stable in black, unstable

in white) and the direction of the flow.

Let us use our graphical approach again. We plot
¤𝑁 versus 𝑁 to see what

the vector field looks like. Note that we plot only 𝑁 ≥ 0, since it makes

no sense to think about a negative population (Figure 6.3). Fixed points

occur at 𝑁 ∗ = 0 and 𝑁 ∗ = 𝐾, as found by setting
¤𝑁 = 0 and solving for

𝑁 . By looking at the flow in Figure 6.3, we see that 𝑁 ∗ = 0 is an unstable

fixed point and 𝑁 ∗ = 𝐾 is a stable fixed point. In biological terms, 𝑁 = 0

is an unstable equilibrium: a small population will grow exponentially

fast and run away from 𝑁 = 0. On the other hand, if 𝑁 is disturbed

slightly from 𝐾, the disturbance will decay monotonically and 𝑁(𝑡) → 𝐾

as 𝑡 → ∞. In fact, all trajectories starting with 𝑁(0) > 0 will flow towards

𝐾.

The only exception is if 𝑁0 = 0; then there’s nobody around to start
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Figure 6.4: Trajectories of the logistic equa-

tion starting at different initial values.

reproducing, and so 𝑁 = 0 for all time. (The model does not allow for

spontaneous generation!).

Figure 6.3 also allows us to deduce the qualitative shape of the solutions.

For example, if 𝑁0 < 𝐾
2

, the phase point moves faster and faster until it

crosses 𝑁 = 𝐾
2

, where the parabola in Figure 6.3 reaches its maximum.

Then the phase point slows down and eventually creeps toward 𝑁 = 𝐾.

In biological terms, this means that the population initially grows in an

accelerating fashion, and the graph of𝑁(𝑡) is convex. But after𝑁 = 𝐾
2

, the

derivative
¤𝑁 begins to decrease, and so 𝑁(𝑡) is concave as it asymptotes

to the horizontal line 𝑁 = 𝐾 (Figure 6.4).

Thus the graph of 𝑁(𝑡) is S-shaped or sigmoid for 𝑁0 < 𝐾
2

.

Something qualitatively different occurs if the initial condition 𝑁0 lies

between
𝐾
2

and 𝐾; now the solutions are decelerating from the start.

Hence these solutions are concave for all 𝑡. If the population initially

exceeds the carrying capacity (𝑁0 > 𝐾), then 𝑁(𝑡) decreases toward

𝑁 = 𝐾 and is convex. Finally, if 𝑁0 = 0 or 𝑁0 = 𝐾, then the population

stays constant.

6.5 Linear Stability Analysis

So far we have relied on graphical methods to determine the stability

of fixed points. Frequently one would like to have a more quantitative

measure of stability, such as the rate of decay to a stable fixed point. This

sort of information may be obtained by linearizing about a fixed point,

as we now explain.

Let 𝑥∗ be a fixed point, and let 𝑞(𝑡) = 𝑥(𝑡) − 𝑥∗ be a small perturbation

away from 𝑥∗. To see whether the perturbation grows or decays, we

derive a differential equation for 𝑞. Differentiation yields

¤𝑞 = ¤𝑥 = 𝑓 (𝑥(𝑡)) = 𝑓 (𝑥∗ + 𝑞(𝑡)).

Now using Taylor’s expansion we obtain

𝑓 (𝑥∗ + 𝑞) = 𝑓 (𝑥∗) + 𝑓 ′(𝑥∗)𝑞 + 𝑜(𝑞),

where 𝑜(𝑞) denotes quadratically small terms in 𝑞. Finally, note that

𝑓 (𝑥∗) = 0 since 𝑥∗ is a fixed point. Hence

¤𝑞 = 𝑓 ′(𝑥∗)𝑞 + 𝑜(𝑞).

Now if 𝑓 ′(𝑥∗) ≠ 0, the 𝑜(𝑞) terms are negligible and we may write the

approximation

¤𝑞 ≈ 𝑓 ′(𝑥∗)𝑞.

This is a linear equation in 𝑞, and is called the linearization about 𝑥∗.
It shows that the perturbation 𝑞(𝑡) grows exponentially if 𝑓 ′(𝑥∗) > 0

and decays if 𝑓 ′(𝑥∗) < 0. If 𝑓 ′(𝑥∗) = 0, the 𝑜(𝑞) terms are not negligible

and a nonlinear analysis is needed to determine stability, as discussed

in Example 6.5.3 below. The upshot is that the slope 𝑓 ′(𝑥∗) at the fixed

point determines its stability. If you look back at the earlier examples,

you’ll see that the slope was always negative at a stable fixed point. The
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(a) x = x3 (b) x = x3

(c) x = x2 (d) x = 0

Figure 6.5: Stability of fixed points for

differential equations where 𝑓 ′(𝑥∗) = 0.

importance of the sign of 𝑓 ′(𝑥∗) was clear from our graphical approach;

the new feature is that now we have a measure of how stable a fixed point

is—that’s determined by the magnitude of 𝑓 ′(𝑥∗). This magnitude plays

the role of an exponential growth or decay rate. Its reciprocal 1/| 𝑓 ′(𝑥∗)|
is a characteristic time scale; it determines the time required for 𝑥(𝑡) to

vary significantly in the neighborhood of 𝑥∗.

Example 6.5.1 Using linear stability analysis, determine the stability

of the fixed points for

¤𝑥 = sin 𝑥.

The fixed points occur where 𝑓 (𝑥) = sin 𝑥 = 0. Thus 𝑥∗ = 𝑘𝜋, where 𝑘

is an integer. Then

𝑓 ′(𝑥∗) = cos 𝑘𝜋 =

{
1, k even

−1, k odd

Hence 𝑥∗ is unstable if 𝑘 is even and stable if 𝑘 is odd. This agrees with

the results shown in Figure 6.1.

Example 6.5.2 Classify the fixed points of the logistic equation, using

linear stability analysis, and find the characteristic time scale in each

case.

Here 𝑓 (𝑁) = 𝑟𝑁
(
1 − 𝑁

𝐾

)
, with fixed points 𝑁 ∗ = 0 and 𝑁 ∗ = 𝐾. Then

𝑓 ′(𝑁) = 𝑟

(
1 − 2𝑁

𝐾

)
,

and so 𝑓 ′(0) = 𝑟 and 𝑓 ′(𝐾) = −𝑟. Hence𝑁 ∗ = 0 is unstable and𝑁 ∗ = 𝐾

is stable, as found earlier by graphical arguments. In either case, the

characteristic time scale is 1/| 𝑓 ′(𝑁 ∗)| = 1/𝑟.

Example 6.5.3 If 𝑓 ′(𝑥∗) = 0 nothing can be said about the stability of a

fixed point in general. The stability is best determined on a case-by-case

basis, using graphical methods. Consider the following examples:

(a) ¤𝑥 = −𝑥3

(b) ¤𝑥 = 𝑥3

(c) ¤𝑥 = 𝑥2

(d) ¤𝑥 = 0

Each of these systems has a fixed point 𝑥∗ = 0 with 𝑓 ′(𝑥∗) = 0 . However

the stability is different in each case. We can see graphically (Figure 6.5)

that (a) is stable and (b) is unstable. Case (c) is a hybrid case we’ll call

half-stable, since the fixed point is attracting from the left and repelling

from the right. We therefore indicate this type of fixed point by a

half-filled circle. Case (d) is a whole line of fixed points; perturbations

neither grow nor decay.
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Exercises

Exercise 6.1 Analyze the following equations graphically. In each case,

sketch the vector field on the real line, find all the fixed points, classify

their stability, and sketch the graph of 𝑥(𝑡) for different initial conditions.

(a) ¤𝑥 = 4𝑥2 − 16

(b) ¤𝑥 = 1 − 𝑥14

(c) ¤𝑥 = 𝑥 − 𝑥3

(d) ¤𝑥 = 𝑒−𝑡 sin 𝑥

(e) ¤𝑥 = 1 + cos 𝑥

(f) ¤𝑥 = 1 − 𝑒cos 𝑥

(g) ¤𝑥 = 𝑒𝑥 − cos 𝑥

Hint: In (g) sketch the graphs of 𝑒𝑥 and cos 𝑥 on the same axes, and look

for intersections. You won’t be able to find the fixed points explicitly, but

you can still find the qualitative behavior.

Exercise 6.2 The velocity 𝑣(𝑡) of a skydiver falling to the ground is

governed by

𝑚 ¤𝑣 = 𝑚𝑔 − 𝑘𝑣2 ,

where 𝑚 is the mass of the skydiver, 𝑔 is the acceleration due to gravity,

and 𝑘 > 0 is a constant related to the amount of air resistance.

(a) It can be shown that the analytical solution for 𝑣(𝑡), assuming that

𝑣(0) = 0, is

𝑣(𝑡) =
√
𝑚𝑔

𝑘

1 − 𝑒−2

√
𝑔𝑘/𝑚𝑡

1 + 𝑒−2

√
𝑔𝑘/𝑚𝑡

.

Find the limit of 𝑣(𝑡) as 𝑡 → ∞. This limiting velocity is called the

terminal velocity.

(b) Give a graphical analysis of this problem, and thereby re-derive a

formula for the terminal velocity.

Exercise 6.3 Consider the model chemical reaction

𝐴 + 𝑋 𝑘1−−⇀↽−−
𝑘−1

2𝑋,

in which one molecule of 𝑋 combines with one molecule of 𝐴 to form

two molecules of 𝑋. This means that the chemical 𝑋 stimulates its own

production, a process called autocatalysis. This positive feedback process

leads to a chain reaction, which eventually is limited by a "back reaction"

in which 2𝑋 returns to 𝐴 + 𝑋. According to the law of mass action of

chemical kinetics, the rate of an elementary reaction is proportional

to the product of the concentrations of the reactants. We denote the

concentrations by lowercase letters 𝑥 = [𝑋] and 𝑎 = [𝐴]. Assume that

there’s an enormous surplus of chemical 𝐴, so that its concentration 𝑎

can be regarded as constant. Then the equation for the kinetics of 𝑥 is

¤𝑥 = 𝑘1𝑎𝑥 − 𝑘−1𝑥
2 ,

where 𝑘1 and 𝑘−1 are positive parameters called rate constants.

(a) Find all the fixed points of this equation and classify their stability.

(b) Sketch the graph of 𝑥(𝑡) for various initial values 𝑥0.
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Exercise 6.4 The growth of cancerous tumors can be modeled by the

Gompertz law

¤𝑁 = −𝑎𝑁 log(𝑏𝑁),

where 𝑁(𝑡) is proportional to the number of cells in the tumor, and

𝑎, 𝑏 > 0 are parameters.

(a) Interpret 𝑎 and 𝑏 biologically.

(b) Sketch the vector field and then graph 𝑁(𝑡) for various initial

values.

(c) Using linear stability analysis, classify the fixed points of the model.

Exercise 6.5 For certain species of organisms, the per capita growth

rate

¤𝑁
𝑁 is highest at intermediate 𝑁 . This is called the Allee effect. For

example, imagine that it is too hard to find mates when 𝑁 is very small,

and there is too much competition for food and other resources when 𝑁

is large. One way to model this is to use

¤𝑁
𝑁

= 𝑟 − 𝑎(𝑁 − 𝑏)2 , 𝑎, 𝑏, 𝑟 > 0.

(a) Draw the per capita growth rate for this system, and dicuss how

the behavior will change depending on whether the intercept (the

value of
¤𝑁/𝑁 when 𝑁 = 0) is positive or negative.

(b) Find all the fixed points of the system and classify their stability

using linear stability analysis. Discuss how the value of the intercept

affects the stability of the fixed points.

(c) Sketch the solutions 𝑁(𝑡) for different initial conditions.

(d) Compare the solutions 𝑁(𝑡) to those found for the logistic equation

¤𝑁 = 𝑟𝑁(1 − 𝑁/𝐾). What are the qualitative differences, if any?

Exercise 6.6 Use linear stability analysis to classify the fixed points of

the following systems. If linear stability analysis fails because 𝑓 ′(𝑥∗) = 0,

use a graphical argument to decide the stability.

(a) ¤𝑥 = 𝑥(1 − 𝑥)
(b) ¤𝑥 = −𝑥(1 − 2𝑥)
(c) ¤𝑥 = tan 𝑥

(d) ¤𝑥 = 𝑥2(6 − 𝑥2)
(e) ¤𝑥 = 1 − 𝑒−𝑥
(f) ¤𝑥 = log 𝑥

(g) ¤𝑥 = 𝑎𝑥 − 𝑥3
, where 𝑎 can be positive, negative, or zero. Discuss all

three cases.
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1: Also called a scalar in this context.

Linear Functions of Several
Variables 7

In this chapter we will take the first steps toward extending the methods

of calculus from functions of a single variable to functions of multiple

variables (also called multivariate functions) and to systems of functions.

Our first step will be to consider an important class of multivariate

functions: functions that are linear in several variables. We will learn

how to solve equations involving these functions, and how to represent

the solutions graphically.

7.1 Linear Transformations

So far, we have seen functions of one variable that have as an output

another real number. However, in many real-world applications we will

deal with functions of several variables.

Example 7.1.1 The function 𝑓 : ℝ3 → ℝ2
given by 𝑓 (𝑥, 𝑦, 𝑧) =

(𝑥2+𝑦2 , 2𝑥𝑧) is a function of several variables, that takes three variables

as an input and outputs two variables. For instance, you can think

of this function as giving the temperature and humidity of a spatial

position in a room.

We call the elements of ℝ𝑛 vectors. Then, a function 𝑇 from ℝ𝑛
to ℝ𝑚

is a rule that assigns to each vector x = (𝑥1 , . . . , 𝑥𝑛) in ℝ𝑛
a vector

𝑇(x) = (𝑇1(x), . . . , 𝑇𝑚(x) in ℝ𝑚
. The set ℝ𝑛

is called the domain of 𝑇, and

ℝ𝑚
is called the codomain of 𝑇. The notation 𝑇 : ℝ𝑛 → ℝ𝑚

indicates

that the domain of 𝑇 is ℝ𝑛
and the codomain is ℝ𝑚

. For x in ℝ𝑛
, the

vector 𝑇(x) in ℝ𝑚
is called the image of x (under the action of 𝑇). The set

of all images 𝑇(x) is called the range of 𝑇.

There are two elementary operations we can do with vectors:

1. Sum: Given two vectors in ℝ𝑛
, x = (𝑥1 , 𝑥2 , . . . , 𝑥𝑛) and y =

(𝑦1 , 𝑦2 , . . . , 𝑦𝑛), their sum is defined as

x + y = (𝑥1 + 𝑦1 , 𝑥2 + 𝑦2 , . . . , 𝑥𝑛 + 𝑦𝑛),

that is, we sum them component-wise.

2. Multiplication by a scalar: Given a vector x = (𝑥1 , 𝑥2 , . . . , 𝑥𝑛) ∈ ℝ𝑛

and a real number
1 𝑐 ∈ ℝ, the multiplication of x by 𝑐 is given by

𝑐x = (𝑐𝑥1 , 𝑐𝑥2 , . . . , 𝑐𝑥𝑛),

that is, we perform the multiplication component-wise.

In this chapter we will focus on a special case of multivariable functions,

making use of these two elementary operations on vectors:
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2: Note that this means that the one-

variable function 𝑓 (𝑥) = 3𝑥+5 is not linear

according to this definition, although it de-

fines a line in the plane. In Linear Algebra,

we only deal with lines that pass through

zero.

3: You may be thinking that this is similar

to the questions of injectivity and surjec-

tivity that we saw for functions of one

variable. You’re right, they are the same.

Definition 7.1.1 (Linear Transformations) A function (also called trans-
formation or mapping in this context) 𝑇 is linear if:

1. 𝑇(u + v) = 𝑇(u) + 𝑇(v) for all u, v in the domain of 𝑇;
2. 𝑇(𝑐u) = 𝑐𝑇(u) for all scalars 𝑐 and all u in the domain of 𝑇.

As a consequence of the above definition, we have that if 𝑇 is a linear

transformation, then

𝑇(0) = 0

and

𝑇(𝑐u + 𝑑v) = 𝑐𝑇(u) + 𝑑𝑇(v)

for all vectors u, v in the domain of 𝑇 and all scalars 𝑐, 𝑑.
2

Another way of writing this is that every linear transformation 𝑇 can be

written as follows:

𝑇(x) = 𝑇(𝑥1 , . . . , 𝑥𝑛) = ©­«
𝑎11𝑥1 + 𝑎12𝑥2 + · · · + 𝑎1𝑛𝑥𝑛

. . .

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + · · · + 𝑎𝑚𝑛𝑥𝑛

ª®¬ .
7.2 Solutions of Linear Equations

Given a linear transformation 𝑇 : ℝ𝑛 → ℝ𝑚
, we may want to know if

the vector b = (𝑏1 , . . . , 𝑏𝑚) ∈ ℝ𝑚
is in the range of 𝑇, that is: is there any

x for which 𝑇(x) = b? And if there is, how many different x map to the

same b?
3

Those questions amount to solving a system of linear equations. A linear

equation in the variables 𝑥1 , . . . , 𝑥𝑛 is an equation that can be written in

the form

𝑎1𝑥1 + 𝑎2𝑥2 + · · · + 𝑎𝑛𝑥𝑛 = 𝑏

where 𝑏 and the coefficients 𝑎1 , . . . , 𝑎𝑛 are real or complex numbers,

usually known in advance. The subscript 𝑛 may be any positive integer.

In textbook examples and exercises, 𝑛 is normally between 2 and 5. In

real-life problems, 𝑛 might be 50 or 5000, or even larger.

A system of linear equations (or a linear system) is a collection of one or

more linear equations involving the same variables. In the case of our

linear transformation, for each component in the output vector b we have

one linear equation.

Example 7.2.1 Given the linear transformation 𝑇 : ℝ3 → ℝ2
given

by 𝑇(𝑥1 , 𝑥2 , 𝑥3) = (2𝑥1 + 𝑥2 − 𝑥3 , 𝑥1 + 4𝑥3), we may ask if the vector

b = (1, 7) is in its image. This is the same as solving the system

2𝑥1 + 𝑥2 − 𝑥3 = 1

𝑥1 + 4𝑥3 = 7

A solution of the system is a list (𝑠1 , 𝑠2 , . . . , 𝑠𝑛) of numbers that

makes each equation a true statement when the values 𝑠1 , . . . , 𝑠𝑛 are

substituted for 𝑥1 , . . . , 𝑥𝑛 , respectively. For instance, (7,−13, 0) is a
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solution of the system because, when these values are substituted in

for 𝑥1 , 𝑥2 , 𝑥3, respectively, the equations are satisfied.

So (1, 7) is in the range of 𝑇.

Note, however, that (3,−4, 1) is also a solution: 𝑇 is not injective. Are

there more solutions to this system?

The set of all possible solutions is called the solution set of the linear

system. Two linear systems are called equivalent if they have the same

solution set. That is, each solution of the first system is a solution of the

second system, and each solution of the second system is a solution of

the first.

Example 7.2.2 Finding the solution set of a system of two linear

equations in two variables is easy because it amounts to finding the

intersection of two lines. A typical problem is

𝑥1 − 𝑥2 = 1

𝑥1 + 3𝑥2 = 9

The graphs of these equations are lines, which we denote by ℓ1 and ℓ2.

A pair of numbers (𝑥1 , 𝑥2) satisfies both equations in the system if and

only if the point (𝑥1 , 𝑥2) lies on both ℓ1 and ℓ2. In the system above, the

solution is the single point (3, 2), as you can easily verify.

Of course, two lines need not intersect in a single point—they could be

parallel, or they could coincide and hence “intersect” at every point on

the line.

Proposed Exercise 7.2.1 Draw the graphs that correspond to the

following systems:

(a) 𝑥1 + 2𝑥2 = 1

𝑥1 + 2𝑥2 = 3

(b) 𝑥1 + 2𝑥2 = 1

2𝑥1 + 4𝑥2 = 2

and discuss how many solutions they have.

Therefore, a system of linear equations has

1. no solution, or

2. exactly one solution, or

3. infinitely many solutions.

A system of linear equations is said to be consistent if it has either one

solution or infinitely many solutions; a system is inconsistent if it has no

solution.
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7.3 Matrix Notation for Systems of Linear
Equations

The essential information of a linear system can be recorded compactly

in a rectangular array called a matrix. Given the system

𝑥1 − 2𝑥2 + 𝑥3 = 0

2𝑥1 − 8𝑥3 = 8

5𝑥3 = 10

with the coefficients of each variable aligned in columns, the matrix

©­«
1 2 1

2 0 −8

0 0 5

ª®¬
is called the coefficient matrix of the system, and

©­«
1 2 1 0

2 0 −8 8

0 0 5 10

ª®¬
is called the augmented matrix of the system. (The second row here

contains a zero because the second equation could be written as 0 · 𝑥1 +
2𝑥2−8𝑥3 = 8. An augmented matrix of a system consists of the coefficient

matrix with an added column containing the constants from the right

sides of the equations.

The size of a matrix tells how many rows and columns it has. The

augmented matrix above has 3 rows and 4 columns and is called a 3 × 4

(read “3 by 4”) matrix. If 𝑚 and 𝑛 are positive integers, an 𝑚 × 𝑛 matrix

is a rectangular array of numbers with 𝑚 rows and 𝑛 columns. (The

number of rows always comes first.) Matrix notation will simplify the

calculations in the examples that follow.

7.4 Gaussian Elimination

Now we will describe an algorithm, or a systematic procedure, for

solving linear systems. The basic strategy is to replace one system with

an equivalent system (i.e., one with the same solution set) that is easier

to solve.

Roughly speaking, use the 𝑥1 term in the first equation of a system to

eliminate the 𝑥1 terms in the other equations. Then use the 𝑥2 term in

the second equation to eliminate the 𝑥2 terms in the other equations,

and so on, until you finally obtain a very simple equivalent system of

equations.

Three basic operations are used to simplify a linear system:

Definition 7.4.1 (Elementary Row Operations) The three elementary row
operations that can be used to simplify a linear system are



7 Linear Functions of Several Variables 67

1. Replacement: Replace one row by the sum of itself and a multiple of
another row.

2. Interchange: Interchange two rows.
3. Scaling: Multiply all entries in a row by a nonzero constant.

Row operations can be applied to any matrix, not merely to one that

arises as the augmented matrix of a linear system. Two matrices are

called row equivalent if there is a sequence of elementary row operations

that transforms one matrix into the other. It is important to note that

row operations are reversible. If two rows are interchanged, they can be

returned to their original positions by another interchange. If a row is

scaled by a nonzero constant 𝑐, then multiplying the new row by 1/𝑐
produces the original row. Finally, consider a replacement operation

involving two rows—say, rows 1 and 2—and suppose that 𝑐 times row 1

is added to row 2 to produce a new row 2. To “reverse” this operation,

add 𝑐 times row 1 to (new) row 2 and obtain the original row 2.

At the moment, we are interested in row operations on the augmented

matrix of a system of linear equations. Suppose a system is changed to a

new one via row operations. By considering each type of row operation,

you can see that any solution of the original system remains a solution of

the new system. Conversely, since the original system can be produced

via row operations on the new system, each solution of the new system

is also a solution of the original system. This discussion justifies the

following statement.

Theorem 7.4.1 If the augmented matrices of two linear systems are row
equivalent, then the two systems have the same solution set.

The algorithm is as follows:

Definition 7.4.2 (Gaussian Elimination) Gaussian row reduction is a
method used to solve systems of linear equations. The algorithm transforms
the augmented matrix of the system into an upper trianguler matrix (with
zeros below the diagonal) and, finally, into a unique reduced echelon form
where the first nonzero entry of each row is equal to 1 and is the only nonzero
entry of its column. From this reduced echelon form it is very easy to read the
solutions of the system.

1. Form the Augmented Matrix:

▶ Write the augmented matrix of the system, which includes the
coefficients of the variables and the constants on the right-hand
side of the equations.

2. Forward Elimination:

▶ Begin with the leftmost nonzero column, which we call the pivot
column.

▶ Select a nonzero entry in the pivot column as the pivot. If
necessary, interchange rows to place this pivot at the top of the
current submatrix.

▶ Use the pivot to create zeros below it in the pivot column. Do this
by replacing each row below the pivot row with the sum of itself
and a suitable multiple of the pivot row.
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▶ Move to the next column to the right and repeat the process until
all columns containing nonzero elements have been processed.
The result is an upper triangular matrix (row echelon form).

3. Backward Substitution (for reduced echelon form):

▶ Start with the rightmost pivot and move to the left.
▶ Normalize the pivot row by dividing it by the pivot element to

make the pivot equal to 1.
▶ Use the pivot to create zeros above it in the pivot column. Do this

by replacing each row above the pivot row with the sum of itself
and a suitable multiple of the pivot row.

▶ Repeat this process for each pivot, moving from right to left, until
the matrix is in reduced row echelon form.

The row reduction algorithm leads directly to an explicit description

of the solution set of a linear system when the algorithm is applied to

the augmented matrix of the system. Suppose, for example, that the

augmented matrix of a linear system has been changed into the equivalent

echelon form ©­«
1 0 −5 1

0 1 1 4

0 0 0 0

ª®¬
There are three variables because the augmented matrix has four columns.

The associated system of equations is

𝑥1 − 5𝑥3 = 1

𝑥2 + 𝑥3 = 4

0 = 0

The variables 𝑥1 and 𝑥2 corresponding to pivot columns in the matrix are

called basic variables. The other variable, 𝑥3, is called a free variable.

Whenever a system is consistent, the solution set can be described

explicitly by solving the reduced system of equations for the basic

variables in terms of the free variables.
𝑥1 = 1 + 5𝑥3

𝑥2 = 4 − 𝑥3

𝑥3 is free

The statement “𝑥3 is free” means that you are free to choose any value for

𝑥3. Once that is done, the formulas in (5) determine the values for 𝑥1 and

𝑥2. For instance, when 𝑥3 = 0, the solution is (1, 4, 0); when 𝑥3 = 1, the

solution is (6, 3, 1). Each different choice of 𝑥3 determines a (different)

solution of the system, and every solution of the system is determined

by a choice of 𝑥3.

Example 7.4.1 Find the general solution of the linear system whose
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augmented matrix has been reduced to

©­­­«
1 6 2 5

2 4 0 10

0 2 8 1

0 0 0 1

ª®®®¬
The augmented matrix is not in upper triangular form, so We want

to make zeros in each pivot column. The row reduction is completed

next. The symbol ∼ before a matrix indicates that the matrix is row

equivalent to the preceding matrix.

©­­­«
1 6 2 5

2 4 0 10

0 2 8 1

0 0 0 1

ª®®®¬ ∼
©­­­«
1 6 2 5

0 −8 −4 0

0 2 8 1

0 0 0 1

ª®®®¬ ∼
©­­­«
1 6 2 5

0 1
1

2

1

8

0 0 1
1

2

0 0 0 1

ª®®®¬
Now the system can be solved easily for the basic variables, by starting

from the bottom and back-substituting the values of the known vari-

ables in the upper equations. Note, however, that this system does not

have any solutions. Why is that?

Theorem 7.4.2 (Existence and Uniqueness Theorem) A linear system is
consistent if and only if the rightmost column of the augmented matrix is
not a pivot column—that is, if and only if an echelon form of the augmented
matrix has no row of the form(

0 0 · · · 0 𝑏
)

with 𝑏 nonzero.

If a linear system is consistent, then the solution set contains either

1. a unique solution, when there are no free variables, or
2. infinitely many solutions, when there is at least one free variable.
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Exercises

Exercise 7.1 Let 𝑇 : ℝ2 → ℝ2
be a linear transformation that maps

e1 = (1, 0) into y1 = (2, 5) and maps e2 = (0, 1) into y2 = (−1, 6). Find the

images of

(
5

3

)
and

(
𝑥1

𝑥2

)
.

Exercise 7.2 Solve the following systems of linear equations using

Gaussian elimination:

1.

{
2𝑥 + 𝑦 = 6

𝑥 − 4𝑦 = −4

2.

{
5𝑥 + 2𝑦 = 8

−𝑥 + 3𝑦 = 9

3.

{
𝑥 − 2𝑦 + 𝑧 = 3

2𝑥 − 3𝑦 + 𝑧 = 8

4.


2𝑥 − 𝑦 = 3

𝑥 − 𝑦 = 4

𝑥 − 3𝑦 = 1

5.


𝑥 + 𝑦 = −1

2𝑥 − 𝑦 = 7

𝑥 − 2𝑦 = 8

6.


2𝑥 + 𝑧 = 4𝑦 − 1

𝑥 + 2𝑦 + 9 = 3𝑧

3𝑥 + 2𝑧 = 4 − 2𝑦

7.


5𝑥 − 𝑦 + 2𝑧 = 6

𝑥 + 2𝑦 − 𝑧 = −1

3𝑥 + 2𝑦 − 2𝑧 = 1

Exercise 7.3 Find the general solutions of the systems whose augmented

matrices are given in:

1.

(
1 3 4 7

3 9 7 6

)
2.

(
1 4 0 7

2 7 0 10

)
3.

(
0 1 −6 5

1 −2 7 −6

)
4.

(
1 −2 −1 3

3 −6 −2 2

)
5.

©­«
3 −4 2 0

−9 12 −6 0

−6 8 −4 1

ª®¬

6.

©­­­«
1 −3 0 −1 0 −2

0 1 0 0 −4 −1

0 0 0 1 9 4

0 0 0 0 1 0

ª®®®¬
7.

©­­­«
1 0 2 6

0 1 0 4

0 0 1 9

0 0 0 0

ª®®®¬
8.

©­­­«
1 2 −5 −6 0 −5

0 1 −6 −3 0 2

0 0 0 0 1 0

0 0 0 0 0 0

ª®®®¬
Exercise 7.4 Determine the value(s) of ℎ such that the matrix is the

augmented matrix of a consistent linear system.

1.

(
2 3 ℎ

4 6 7

)
2.

(
1 −3 −2

5 ℎ −7

)
Exercise 7.5 Choose ℎ and 𝑘 such that the system has (a) no solution,

(b) a unique solution, and (c) many solutions. Give separate answers for

each part.

1.

{
𝑥1 + ℎ𝑥2 = 2

4𝑥1 + 8𝑥2 = 𝑘
2.

{
𝑥1 + 3𝑥2 = 2

3𝑥1 + ℎ𝑥2 = 𝑘

Exercise 7.6 Solve the following questions involving linear transforma-

tions:
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1. Let 𝑇 : ℝ2 → ℝ2
be a linear transformation such that 𝑇(𝑥1 , 𝑥2) =

(𝑥1 + 𝑥2 , 4𝑥1 + 5𝑥2). Find x such that 𝑇(x) = (3, 8).
2. Let 𝑇 : ℝ2 → ℝ3

be a linear transformation such that 𝑇(𝑥1 , 𝑥2) =
(𝑥1 − 2𝑥2 , 𝑥1 + 3𝑥2 , 3𝑥1 − 2𝑥2). Find x such that 𝑇(x) = (−1, 4, 9).



Matrix Algebra 8
8.1 Matrix Notation for Linear Transformations

If 𝐴 =

©­­­­«
𝑎11 𝑎12 · · · 𝑎1𝑛

𝑎21 𝑎22 · · · 𝑎2𝑛

...
...

. . .
...

𝑎𝑚1 𝑎𝑚2 · · · 𝑎𝑚𝑛

ª®®®®¬
is an 𝑚 × 𝑛 matrix, and if x is in ℝ𝑛

, then

the product of 𝐴 and x, denoted by 𝐴x, is the linear combination of the

columns of 𝐴 using the corresponding entries in x as weights; that is,

𝐴x =

©­­­­«
𝑎11 𝑎12 · · · 𝑎1𝑛

𝑎21 𝑎22 · · · 𝑎2𝑛

...
...

. . .
...

𝑎𝑚1 𝑎𝑚2 · · · 𝑎𝑚𝑛

ª®®®®¬
©­­­­«
𝑥1

𝑥2

...

𝑥𝑛

ª®®®®¬
=

©­­«
𝑎11𝑥1 + 𝑎12𝑥2 + · · · + 𝑎1𝑛𝑥𝑛

...

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + · · · + 𝑎𝑚𝑛𝑥𝑛

ª®®¬
Note that 𝐴x is defined only if the number of columns of 𝐴 equals the

number of entries in x.

This definition of matrix multiplication by a vector means that, given

a linear transformation 𝑇 : ℝ𝑛 → ℝ𝑚
, for each x in ℝ𝑛

, 𝑇(x) can

be computed as 𝐴x, where 𝐴 is an 𝑚 × 𝑛 matrix. For simplicity, we

sometimes denote such a matrix transformation by x ↦→ 𝐴x. Observe

that the domain of 𝑇 is ℝ𝑛
when 𝐴 has 𝑛 columns and the codomain of

𝑇 is ℝ𝑚
when each column of 𝐴 has 𝑚 entries. The range of 𝑇 is the set

of all linear combinations of the columns of 𝐴, because each image 𝑇(x)
is of the form 𝐴x.

This means that every matrix defines a linear transformation, and that

every linear transformation can be written in matrix form. So, in practice,

the two mathematical objects are identical.

Example 8.1.1 Let

𝐴 =
©­«
1 3

2 5

1 7

ª®¬ , u =

(
2

−1

)
, b =

©­«
1

2

1

ª®¬ , and c =
©­«
3

4

5

ª®¬
define a transformation 𝑇 : ℝ2 → ℝ3

by 𝑇(x) = 𝐴x, so that

𝑇(x) = 𝐴x =
©­«
1 3

2 5

1 7

ª®¬
(
𝑥1

𝑥2

)
=

©­«
𝑥1 + 3𝑥2

2𝑥1 + 5𝑥2

𝑥1 + 7𝑥2

ª®¬
(a) Find 𝑇(u), the image of u under the transformation 𝑇.

(b) Find an x in ℝ2
whose image under 𝑇 is b.

(c) Is there more than one x whose image under 𝑇 is b?
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(d) Determine if c is in the range of the transformation 𝑇.

Solution:

(a) Compute

𝑇(u) = 𝐴u =
©­«
1 3

2 5

1 7

ª®¬
(

2

−1

)
=

©­«
1(2) + 3(−1)
2(2) + 5(−1)
1(2) + 7(−1)

ª®¬ =
©­«
−1

−1

−5

ª®¬
(b) Solve 𝑇(x) = b for x. That is, solve 𝐴x = b, or

©­«
1 3

2 5

1 7

ª®¬
(
𝑥1

𝑥2

)
=

©­«
1

2

1

ª®¬
We row reduce the augmented matrix:

©­«
1 3 | 1

2 5 | 2

1 7 | 1

ª®¬ ∼ ©­«
1 3 | 1

0 −1 | 0

0 4 | 0

ª®¬ ∼ ©­«
1 3 | 1

0 1 | 0

0 0 | 0

ª®¬
Hence 𝑥1 = 1, 𝑥2 = 0, and x =

(
1

0

)
. The image of this x under 𝑇

is the given vector b.

(c) Since the solution of the previous equation is unique, there is

exactly one x whose image is b.

(d) The vector c is in the range of 𝑇 if c is the image of some x in ℝ2
,

that is, if c = 𝑇(x) for some x. This is just another way of asking if

the system 𝐴x = c is consistent. To find the answer, row reduce

the augmented matrix:

©­«
1 3 | 3

2 5 | 4

1 7 | 5

ª®¬ ∼ ©­«
1 3 | 3

0 −1 | −2

0 4 | 2

ª®¬ ∼ ©­«
1 3 | 3

0 1 | 2

0 0 | −6

ª®¬
The third equation, 0 = −6, shows that the system is inconsistent.

So c is not in the range of 𝑇.

Now, given a linear transformation 𝑇, what is the matrix 𝐴 that defines

it?

Proposed Exercise 8.1.1 If 𝑇 : ℝ2 → ℝ4 is given by 𝑇(e1) = (3, 1, 3, 1)
and 𝑇(e2) = (5, 2, 0, 0), where e1 = (1, 0) and e2 = (0, 1), what is the

matrix 𝐴 of 𝑇?

Remember that, for any x = (𝑥1 , 𝑥2), 𝑇(x) = 𝑥1𝑇(e1) + 𝑥2𝑇(e2).

Theorem 8.1.1 (Matrix of a Linear Transformation) Let 𝑇 : ℝ𝑛 → ℝ𝑚

be a linear transformation. Then there exists a unique 𝑚 × 𝑛 matrix 𝐴 such
that

𝑇(x) = 𝐴x for all x ∈ ℝ𝑛 .

The 𝑗-th column of 𝐴 is the vector 𝑇(e𝑗), where e𝑗 is the 𝑗-th column of the
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Figure 8.1: A shear transformation.

identity matrix in ℝ𝑛 :

𝐴 =
(
𝑇(e1) 𝑇(e2) · · · 𝑇(e𝑛)

)
.

The matrix 𝐴 is called the standard matrix of the linear transformation 𝑇.

Example 8.1.2 Let𝐴 =

(
1 3

0 2

)
and𝑇 be a linear transformation defined

by 𝑇(x) = 𝐴x. 𝑇 is called a shear transformation (Figure 8.1). It can be

shown that if 𝑇 acts on each point in the blue square (Figure 8.1, above),

then the set of images forms the shaded red parallelogram (Figure 8.1,

below). It can be shown that 𝑇 maps line segments onto line segments,

so we only need to check where the corners of the square are mapped

to. For instance, the image of the point u =

(
0

1

)
is

𝑇(u) =
(
1 3

0 2

) (
0

1

)
=

(
3

2

)
,

and the image of (
1

1

)
is (

1 3

0 2

) (
1

1

)
=

(
4

2

)
.

This transformation deforms the square as if the top of the square were

pushed to the right while the base is held fixed. Shear transformations

appear in physics, geology, and crystallography.

Example 8.1.3 Let 𝑇 : ℝ2 → ℝ2
be the transformation that rotates

each point in ℝ2
about the origin through an angle 𝜑, with counter-

clockwise rotation for a positive angle. We could show geometrically

that such a transformation is linear. Find the standard matrix 𝐴 of this

transformation. Since

(
1

0

)
rotates into

(
cos 𝜑
sin 𝜑

)
, and

(
0

1

)
rotates into

(
− sin 𝜑
cos 𝜑

)
.

Therefore:

𝐴 =

(
cos 𝜑 − sin 𝜑
sin 𝜑 cos 𝜑

)
.
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8.2 Operations with matrices

Matrix sum

The sum of two matrices 𝐴 and 𝐵 of the same dimensions 𝑚 × 𝑛 is

obtained by adding their corresponding entries. If

𝐴 =

©­­­­«
𝑎11 𝑎12 · · · 𝑎1𝑛

𝑎21 𝑎22 · · · 𝑎2𝑛

...
...

. . .
...

𝑎𝑚1 𝑎𝑚2 · · · 𝑎𝑚𝑛

ª®®®®¬
and 𝐵 =

©­­­­«
𝑏11 𝑏12 · · · 𝑏1𝑛

𝑏21 𝑏22 · · · 𝑏2𝑛

...
...

. . .
...

𝑏𝑚1 𝑏𝑚2 · · · 𝑏𝑚𝑛

ª®®®®¬
,

then their sum 𝐶 = 𝐴 + 𝐵 is given by

𝐶 =

©­­­­«
𝑎11 + 𝑏11 𝑎12 + 𝑏12 · · · 𝑎1𝑛 + 𝑏1𝑛

𝑎21 + 𝑏21 𝑎22 + 𝑏22 · · · 𝑎2𝑛 + 𝑏2𝑛

...
...

. . .
...

𝑎𝑚1 + 𝑏𝑚1 𝑎𝑚2 + 𝑏𝑚2 · · · 𝑎𝑚𝑛 + 𝑏𝑚𝑛

ª®®®®¬
.

Given two linear transformations 𝑇1 : ℝ𝑛 → ℝ𝑚
given by 𝑇1(x) = 𝐴x,

and 𝑇2 : ℝ𝑛 → ℝ𝑚
, given by 𝑇2(x) = 𝐵x, for matrices 𝐴 and 𝐵 with

corresponding dimensions, their sum 𝑆 = 𝑇1 +𝑇2 is defined as 𝑆 :: ℝ𝑛 →
ℝ𝑚

given by 𝑆(x) = 𝐶x, where the matrix 𝐶 = 𝐴 + 𝐵.

Matrix Multiplication

Matrix multiplication has an intuitive functional interpretation, that can

be understood from the following example:

Example 8.2.1 Consider two linear transformations in ℝ2
. The trans-

formation 𝑇𝑅 reflects points across the line 𝑥 = 𝑦, and its standard

matrix 𝑅 is:

𝑅 =

(
0 1

1 0

)
.

The transformation𝑇𝑆 scales each point away from the origin by a factor

3 in the horizontal direction and a factor 5 in the vertical direction. Its

standard matrix 𝑆 is:

𝑆 =

(
3 0

0 5

)
.

If we apply 𝑇𝑆 and then 𝑇𝑅 we will obtain a new linear transformation,

which is no other than the composition of these transformations,

𝑇𝑅 ◦ 𝑇𝑆. Since this is also a linear transformation, 𝑇𝐶 , it will have its

own standard matrix 𝐶.

In order to find 𝐶, we remember that its columns will be the transforms

of e1 and e2. That is:

e1 → 𝑇𝑆(e1) =
(
3 0

0 5

)
e1 =

(
3

0

)
→ 𝑇𝑅(𝑆e1) =

(
0 1

1 0

) (
3

0

)
=

(
0

3

)
,
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and

e2 → 𝑇𝑆(e2) =
(
3 0

0 5

)
e2 =

(
0

5

)
→ 𝑇𝑅(𝑆e2) =

(
0 1

1 0

) (
0

5

)
=

(
5

0

)
.

Finally,

𝐶 =

(
0 5

3 0

)
.

Note that the transformation of e1 by 𝑇𝐶 , given by the product(
0 5

3 0

)
e1 ,

is identical to the action of two matrices, first 𝑆 and then 𝑅,(
0 1

1 0

) ((
3 0

0 5

)
e1

)
.

This is not only true for e1, but for every vector x:(
0 5

3 0

)
x =

(
0 1

1 0

) ((
3 0

0 5

)
x
)
.

Moreover, each column of 𝐶 is the result of multiplying 𝑆 by the

corresponding column of 𝑅. This example suggests the following

definition of matrix multiplication.

The product of an 𝑚 × 𝑛 matrix 𝐴 and an 𝑛 × 𝑝 matrix 𝐵 is an 𝑚 × 𝑝
matrix 𝐶 whose entries are obtained by taking the dot product of the

rows of 𝐴 with the columns of 𝐵. If

𝐴 =

©­­­­«
𝑎11 𝑎12 · · · 𝑎1𝑛

𝑎21 𝑎22 · · · 𝑎2𝑛

...
...

. . .
...

𝑎𝑚1 𝑎𝑚2 · · · 𝑎𝑚𝑛

ª®®®®¬
and 𝐵 =

©­­­­«
𝑏11 𝑏12 · · · 𝑏1𝑝

𝑏21 𝑏22 · · · 𝑏2𝑝

...
...

. . .
...

𝑏𝑛1 𝑏𝑛2 · · · 𝑏𝑛𝑝

ª®®®®¬
,

then their product 𝐶 = 𝐴𝐵 is given by

𝐶 =

©­­­­«
𝑐11 𝑐12 · · · 𝑐1𝑝

𝑐21 𝑐22 · · · 𝑐2𝑝

...
...

. . .
...

𝑐𝑚1 𝑐𝑚2 · · · 𝑐𝑚𝑝

ª®®®®¬
,

where

𝑐𝑖 𝑗 =
𝑛∑
𝑘=1

𝑎𝑖𝑘𝑏𝑘 𝑗 for all 𝑖 and 𝑗.

Geometrically, the multiplication of two matrices 𝐴 and 𝐵 can be inter-

preted as the composition of two linear transformations 𝑇𝐴 and 𝑇𝐵: the

matrix 𝐶 = 𝐴𝐵 resulting from the multiplication of 𝐴 and 𝐵 corresponds

to the matrix of a linear transformation 𝑇𝐶 that is the composition of two

transformations 𝑇𝐴 and 𝑇𝐵, 𝑇𝐶 = 𝑇𝐴 ◦ 𝑇𝐵.

Note that 𝐶 = 𝐴𝐵 implies that 𝐵 is applied first, then 𝐴. In general,

matrix multiplication is NOT commutative: the order in which we apply
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a linear transformation affects the result.

Proposed Exercise 8.2.1 What is the standard matrix of the transfor-

mation 𝑆 ◦ 𝑇 in example 8.2.1?

8.3 Determinants

Example 8.3.1 Given the linear transformation whose standard matrix

is

(
3 0

0 2

)
, we know that e1 will be expanded by a factor 3, while e2

will be expanded by a factor 2. Remembering example 8.1.2, we can

ask what is the area of the parallelogram resulting from transforming

the blue square in Figure 8.1. In this case, we have a 2 × 3 rectangle,

with area equal to 6.

Note that knowing how the area of this particular square changes will

tell us how the area of any region will change, since every square is

affected similarly, and every area that is not square can be approximated

by a sum of very small squares (and, eventually, by an integral!).

The quantity that tells us how the area of the square [0, 1|] × [0, 1] is

scaled by a linear transformation whose standard matrix is 𝐴 is called

the determinant of 𝐴:

Definition 8.3.1 (Determinant, 2× 2 case) For a 2× 2 matrix 𝐴 =

(
𝑎 𝑏

𝑐 𝑑

)
its determinant, det𝐴 is given by

det𝐴 = 𝑎𝑑 − 𝑐𝑏.

The relationship between the formula of the determinant and it ge-

omegtric interpretation is self-evident when 𝑏 = 𝑐 = 0, as the transforma-

tion of the [0, 1] × [0, 1] square is then a rectangle with sides of length 𝑎

and 𝑑. When 𝑏, 𝑐 ≠ 0, however, this is not so easy to prove. See, however,

exercise 8.8 for a geometric proof.

Example 8.3.2 Given the matrix 𝐴 =

(
2 1

−1 −3

)
, its determinant is −5.

Can you think of why the determinant is negative? Think about the

orientation of the plane.

Proposed Exercise 8.3.1 Given the matrix 𝐴 =

(
2 1

4 2

)
, calculate its

determinant. What does this mean? Think of a geometric interpretation.

For linear transformations from ℝ3
to ℝ3

, the determinant gives us how

much the volume of the cube [0, 1] × [0, 1] × [0, 1] gets scaled. The rul

for calculating the determinant is then:
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1: A matrix that is not invertible is some-

times called a singular matrix, and an in-

vertible matrix is called a nonsingular ma-

trix.

Definition 8.3.2 (Determinant, 3 × 3 case) For a 3 × 3 matrix

𝐴 =
©­«
𝑎 𝑏 𝑐

𝑑 𝑒 𝑓

𝑔 ℎ 𝑖

ª®¬ ,
the determinant det(𝐴) can be calculated using Sarrus’s rule:

det(𝐴) = 𝑎𝑒𝑖 + 𝑏 𝑓 𝑔 + 𝑐𝑑ℎ − 𝑐𝑒 𝑔 − 𝑏𝑑𝑖 − 𝑎 𝑓 ℎ.

Proposed Exercise 8.3.2 Show that the determinant of

𝐴 =
©­«
1 2 1

0 5 4

2 3 0

ª®¬
is −6.

The general rule to calculate the determinant of an 𝑛 × 𝑛 matrix is more

complicated, and we will not cover it in this course.

8.4 Inverse of a Matrix

Given a linear transformation 𝑇 : ℝ𝑛 → ℝ𝑛
, can we find another linear

transformation𝑇−1
such that𝑇◦𝑇−1 = 𝑇−1◦𝑇 = Id? Using our knowledge

of matrix multiplication, if 𝐴 is the standard matrix of 𝑇, finding the

inverse of 𝑇 amounts to finding a matrix 𝐶 such that

𝐴𝐶 = 𝐶𝐴 = 𝐼𝑛 , where 𝐼𝑛 =

©­­­­«
1 0 . . . 0

0 1 . . . 0

...
...

. . .
...

0 0 . . . 1

ª®®®®¬
.

The matrix 𝐼𝑛 , with 1s on the diagonal and 0s elsewhere, is called the

identity matrix of size 𝑛.

The matrix 𝐶 is unique and we often refer to it as 𝐴−1
. Not all matrices

(and therefore not all transformations) are invertible, and we will see in a

moment when this happens.
1

Here is a simple formula for the inverse of a 2 × 2 matrix, along with a

test to tell if the inverse exists.

Definition 8.4.1 (Inverse, 2 × 2 case)Let

𝐴 =

(
𝑎 𝑏

𝑐 𝑑

)
.

If 𝑎𝑑 − 𝑏𝑐 ≠ 0, then 𝐴 is invertible and

𝐴−1 =
1

𝑎𝑑 − 𝑏𝑐

(
𝑑 −𝑏
−𝑐 𝑎

)
.
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If 𝑎𝑑 − 𝑏𝑐 = 0, then 𝐴 is not invertible.

Example 8.4.1 Let

𝐴 =

(
4 3

3 2

)
Then det𝐴 = −1 ≠ 0, and so 𝐴 is invertible. Using the formula, we get

𝐴−1 = −
(

2 −3

−3 4

)
=

(
−2 3

3 −4

)
.

It is easy to check that the calculations are correct, since

𝐴𝐴−1 =

(
4 3

3 2

) (
−2 3

3 −4

)
=

(
1 0

0 1

)
= 𝐼2

and

𝐴−1𝐴 =

(
−2 3

3 −4

) (
4 3

3 2

)
=

(
1 0

0 1

)
= 𝐼2.

What has the determinant got to do with the inverse? If 𝑇−1
is the inverse

of 𝑇, then it has to “undo” the effect of 𝑇 on ℝ𝑛
, and so the determinant

of its standard matrix should be the reciprocal of det𝐴. In other words,

det𝐴−1 =
1

det𝐴
.

Proposed Exercise 8.4.1 Check that the previous equation is true by

doing the calculations with the matrices in example 8.4.1

So if det𝐴 = 0 then the inverse is not defined. In this case, the transfor-

mation 𝑇 : ℝ2 → ℝ2
is collapsing one dimension of the plane onto one

line, and thus many different inputs will end with the same output. In

other words, this means that the linear transformation is not injective or

one-to-one. So it is not possible to find an inverse! We can write this more

rigorously as follows:

Theorem 8.4.1 If 𝐴 is an invertible 𝑛 × 𝑛 matrix, then for each b in ℝ𝑛 , the
equation 𝐴x = b has the unique solution x = 𝐴−1b.



Exercises 80

Exercises

Exercise 8.1 Let 𝑇 : ℝ3 → ℝ2
, with 𝑇(𝑒1) = (1, 3), 𝑇(𝑒2) = (4, 7), and

𝑇(𝑒3) = (5, 4), where 𝑒1, 𝑒2, and 𝑒3 are the columns of the 3 × 3 identity

matrix. Find the standard matrix of 𝑇.

Exercise 8.2 Given

𝐴 =

(
2 0 −1

4 −5 2

)
, 𝐵 =

(
7 −5 1

1 −4 −3

)
, 𝐶 =

(
1 2

−2 1

)
,

𝐷 =

(
3 5

−1 4

)
, 𝐸 =

(
−5

3

)
,

calculate:

1. −2𝐴,

2. 𝐵 − 2𝐴,

3. 𝐴𝐶,

4. 𝐶𝐷,

5. 𝐴 + 2𝐵,

6. 3𝐶 − 𝐸,

7. 𝐶𝐵,

8. 𝐸𝐵.

If an expression is undefined, explain why.

Exercise 8.3 Let 𝐴 =

(
2 5

−3 1

)
and 𝐵 =

(
4 −5

3 𝑘

)
. What value(s) of 𝑘, if

any, will make 𝐴𝐵 = 𝐵𝐴?

Exercise 8.4 Let

𝐴 =

(
2 −3

−4 6

)
, 𝐵 =

(
8 4

5 5

)
, and 𝐶 =

(
5 −2

3 1

)
.

Verify that 𝐴𝐵 = 𝐴𝐶 and yet 𝐵 ≠ 𝐶.

Exercise 8.5 Find the inverses of the following matrices:

1.

(
8 6

5 4

)
,

2.

(
3 2

7 4

)
,

3.

(
8 5

−7 −5

)
,

4.

(
3 −4

7 −8

)
.

Exercise 8.6 Solve the following systems:

1.

{
8𝑥1 + 6𝑥2 = 2,

5𝑥1 + 4𝑥2 = 1.
2.

{
8𝑥1 + 5𝑥2 = 9,

7𝑥1 + 5𝑥2 = 11.

In both cases, use the inverses found in Exercise 8.5.

Exercise 8.7 Given the matrix 𝐴 =

(
𝑎 𝑏

𝑐 𝑑

)
, explore the effect of an

elementary row operation on det𝐴 by calculating the determinants of

the following matrices. In each case, state the row operation and describe

how it affects the determinant.

1.

(
𝑐 𝑑

𝑎 𝑏

)
,
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2.

(
𝑎 + 𝑘𝑐 𝑏 + 𝑘𝑑
𝑐 𝑑

)
,

3.

(
𝑎 𝑏

𝑘𝑐 𝑘𝑑

)
.

Exercise 8.8 Use Figure 8.2 to obtain the formula for the determinant of

a 2 × 2 matrix using geometric arguments.

Figure 8.2: Exercise 8.8.

Exercise 8.9 Let 𝑆 be the parallelogram determined by the vectors

b1 =

(
−2

3

)
and b2 =

(
−2

5

)
, and let 𝐴 =

(
6 −3

−3 2

)
. Compute the area of

the image of 𝑆 under the mapping x ↦→ 𝐴x.

Exercise 8.10 Given the two matrices 𝐴 =

(
6 −1

−3 2

)
and 𝐵 =

(
1 6

−1 −4

)
,

obtain the matrix 𝐴𝐵 and calculate its determinant. Show that det(𝐴𝐵) =
det𝐴det 𝐵. Give a geometric interpretation for this fact.

Exercise 8.11 Given the matrix 𝐴 =

(
2 5

1 3

)
, finding its inverse 𝐴−1 =(

𝑏11 𝑏12

𝑏21 𝑏22

)
is the same as solving two systems of equations, namely:{

2𝑏11 + 5𝑏21 = 1

𝑏11 + 3𝑏21 = 0

and {
2𝑏12 + 5𝑏22 = 0

𝑏12 + 3𝑏22 = 1.

Solve both systems at the same time by writing an augmented matrix

with four columns: the two columns of 𝐴 plus the two columns of the

identity matrix. When the two leftmost columns are those of the identity,

the two rightmost columns will be those of 𝐴−1
. Compare the result with

the one you obtained using the formula.



1: The theory we will develop is also valid

for 𝑛 × 𝑛 matrices, although the computa-

tions can be much more involved.

Eigenvalues and Eigenvectors 9
In this chapter, we will only consider linear transformations from ℝ𝑛

to ℝ𝑛
and, in particular, only the case when 𝑛 = 2. That is, we will be

dealing with 2 × 2 matrices.
1

The goal of this chapter is to dissect the

action of a linear transformation x → 𝐴x into elements that are easily

visualized. The main motivation are dynamical systems, such as the one

in the following example:

Example 9.0.1 (A neuron-firing model) A very simple model of neuron

activity is this: at a given (discrete) time step, a neuron can either be

activated (firing) or in a resting state. If it is firing, it can either stop at

the next step with probability 4/5, or remain firing with probability

1/5. If it is at rest, it can start firing with probability 1/3 or remain at

rest with probability 2/3.

If we write the state of the neuron at time step 𝑛 as

x𝑛 = (probability of being firing, probability of being at rest),

then we can calculate x𝑛+1 as follows:

x𝑛+1 =

(
4/5 1/3

1/5 2/3

)
x𝑛 .

That is, the probability that at time 𝑛 + 1 the neuron is firing is equal

to the probability that it is firing at time 𝑛 (this is (x𝑛)1 times the

probability that it stays firing (4/5) plus the probability that it was

at rest at time 𝑛 times the probability that it starts firing (1/3). And

similarly with the probability that it is at rest at time 𝑛 + 1.

The matrix 𝑃 =

(
4/5 1/3

1/5 2/3

)
is called the transition matrix of this

model.

Given this model, and supposing x0 = (0, 1) (the neuron is at rest at

time 𝑛 = 0), what is the probability that it is firing at time 𝑛 = 1? And

at 𝑛 = 10? And at 𝑛 = 100?

We can calculate these numbers iterativelyy, as

x𝑛 = 𝑃x𝑛−1 = 𝑃2x𝑛−1 = · · · = 𝑃𝑛x0.

For instance, if x0 = (1, 0), we have x1 = (1/3, 2/3), and x10 ≈
(0.624694, 0.375306). If we keep calculating with a computer, we ob-

serve that x100 ≈ (0.625, 0.375), which is very similar to x10.

At the same time, if we calculate the product 𝑃 · (0.625, 0.375)we obtain

the same vector (0.625, 0.375). What is happening? Can we understand

this better?
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2: It is also called the trivial solution.

9.1 Eigenvalues and Eigenvectors

In example 9.0.1 we have seen a matrix 𝐴 and a vector v such that 𝐴v = v.

This is a particular case of a general phenomenon:

Definition 9.1.1 (Eigenvalues and eigenvectors) We say that v is an
eigenvector or 𝐴 if 𝐴v = 𝜆v for some number 𝜆, which we call the
eigenvalue associated with v.

Note that v = 0 always satisfies the equation 𝐴v = 𝜆v, for all 𝜆, and so it

is not very interesting!

This means that there are some directions that remain invariant under

the action of the linear transformation associated with 𝐴: if 𝐴v is a

multiple of v, this means that every point in that line remains in that line,

no matter what happens to the other points in ℝ𝑛
.

It is very easy to show that a vector v is an eigenvector of a matrix 𝐴: just

calculate 𝐴v and check that the result is proportional to v.

Proposed Exercise 9.1.1 Let 𝐴 =

(
1 6

5 2

)
. Are u =

(
6

−5

)
and v =

(
3

−2

)
eigenvectors of 𝐴?

It is also not very hard to check that a given number is an eigenvalue of a

matrix (how would you do it?). However, it wouldn’t be very smart to go

checking every vector and number in order to see if they are eigenvectors

and eigenvalues, so we will show a general method to do it.

Since eigenvectors and eigenvalues must satisfy the equation 𝐴v = 𝜆𝑣, it

must also be true that 𝐴v−𝜆v = 0. In order to factor v, we must multiply

𝜆v by the identity matrix 𝐼, thus yielding (𝐴 − 𝜆𝐼)v = 0.

We saw in Section 8.4 that, if a matrix 𝐴 is invertible, the equation 𝐴x = b
has a unique solution. In particular, this means that the equation 𝐴x = 0
has a unique solution. But x = 0 is always a solution of that system of

equations,
2

so if there is a unique solution, it must be that one.

In the case that interests us now, the system (𝐴 − 𝜆𝐼)v = 0 will have the

unique solution v = 0 if 𝐴 − 𝜆𝐼 is invertible. But this is the case that we

are not interested in: we want v ≠ 0.

For that to happen, the matrix 𝐴 − 𝜆𝐼 must be singular or non-invertible.

And the easiest way to check that is to show that its determinant is zero.

In other words: the eigenvalues of 𝐴 are the numbers 𝜆 that satisfy

det(𝐴 − 𝜆𝐼) = 0.

This equation is usually called the characteristic equation of 𝐴, and it is

a polynomial equation in 𝜆.

Once we have found the values of𝜆 that satisfy the characteristic equation,

we then substitute those values of 𝜆 into the system and solve it in search

for the eigenvectors. Let’s see some examples.
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3: Check this using the equation of the

line.

Example 9.1.1 Find all the eigenvalues and eigenvectors of 𝐴 =

(
1 2

3 2

)
.

We set up the characteristic equation det(𝐴 − 𝜆𝐼) = 0:����1 − 𝜆 2

3 2 − 𝜆

���� = (1 − 𝜆)(2 − 𝜆) − 6 = 𝜆2 − 3𝜆 − 4.

Now we can easily solve this since it is a second-degree polynomial

equation. The two solutions are 𝜆1 = −1 and 𝜆2 = 4.

Let’s find the eigenvector associated to 𝜆1. We need to find the nonzero

solutions of (
2 2

3 3

) (
𝑥1

𝑥2

)
=

(
0

0

)
.

The general solution is 𝑥1 = −𝑥2, with 𝑥2 free. We can take as eigen-

vector (1,−1), but note that there are infinite eigenvectors! All vectors

proportional to (1,−1) will also be eigenvectors of the same eigenvalue.

Now we find the eigenvectors associated with 𝜆2:(
−3 2

3 −2

) (
𝑥1

𝑥2

)
=

(
0

0

)
=⇒ 𝑥1 =

2

3

𝑥2.

So we could take (2, 3) as eigenvector.

Good intuition comes from picturing what 𝐴 does to the eigenvectors,

and how that in turn deforms the whole plane.

When the eigenvalues are real, as in the previous example, all eigenvectors

corresponding to a particular eigenvalue lie on the same straight line

through the origin. For example, the line represented by the vector (1,−1)
is given by 𝑙1 = {(𝑥1 , 𝑥2) : 𝑥1 + 𝑥2 = 0}, while the line represented by

vector (2, 3) is given by 𝑙2 = {(𝑥1 , 𝑥2) : 3𝑥1 − 2𝑥2 = 0}. The lines 𝑙1 and

𝑙2 are invariant under the map x → 𝐴x, in the sense that if we choose a

point (𝑥1, 𝑥2) on a line that is represented by an eigenvector, then since

𝐴x = 𝜆x the result of the map is a point on that same line.
3

Let’s see another example:

Example 9.1.2 Find all the eigenvalues and eigenvectors of𝐴 =

(
1 1

1 1

)
.

We set up the characteristic equation det(𝐴 − 𝜆𝐼) = 0:����1 − 𝜆 1

1 1 − 𝜆

���� = (1 − 𝜆)(1 − 𝜆) − 1 = 𝜆2 − 2𝜆.

Now we can easily solve this since it is a second-degree polynomial

equation. The two solutions are 𝜆1 = 0 and 𝜆2 = 2. Note that there is

no problem with 0 being an eigenvalue: this just means that det𝐴 = 0

but, as we already know, this means that the equations 𝐴x = 0 has

infinite nonzero solutions, aka eigenvectors.

Let’s find the eigenvector associated to 𝜆1. We need to find the nonzero
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solutions of (
1 1

1 1

) (
𝑥1

𝑥2

)
=

(
0

0

)
.

The general solution is 𝑥1 = −𝑥2, with 𝑥2 free. We can take as eigen-

vector (1,−1).

Now we find the eigenvectors associated with 𝜆2:(
−1 1

1 −1

) (
𝑥1

𝑥2

)
=

(
0

0

)
=⇒ 𝑥1 = 𝑥2.

So we could take (1, 1) as eigenvector.

Here we can see that the line 𝑥1 + 𝑥2 = 0 is collapsed onto the origin,

while the line 𝑥1 − 𝑥2 = 0 remains invariant.

Sometimes, the eigenvalues can be repeated:

Example 9.1.3 Find all the eigenvalues and eigenvectors of𝐴 =

(
2 1

0 2

)
.

We set up the characteristic equation det(𝐴 − 𝜆𝐼) = 0:����2 − 𝜆 1

0 2 − 𝜆

���� = (2 − 𝜆)(2 − 𝜆).

The solution is 𝜆 = 2, a double root of the polynomial. We say that the

algebraic multiplicity of the eigenvalue is 2. Note that we can read the

eigenvalues directly from the matrix: when the matrix is triangular,

the determinant is equal to the product of the elements of the diagonal,

and so the determinant is going to be zero whenever 𝜆 − 𝑎𝑖𝑖 = 0. In

other words, for a triangular matrix the eigenvalues are the elements

of the diagonal.

Are we going to find two eigenvectors associated with 𝜆 = 2? Let’s

find out! We need to find the nonzero solutions of:(
0 1

0 0

) (
𝑥1

𝑥2

)
=

(
0

0

)
.

The general solution is 𝑥2 = 0, with 𝑥1 free. We can take as eigenvector

(1, 0).

But there are no more solutions! There is only one direction of eigen-

vectors. We say that the geometric multiplicity of the eigenvalue is

one. This is a very important fact for linear algebra problems but, sadly,

we don’t have time to go into it in this course.

9.2 Powers of a Matrix

For this discussion, we will restrict ourselves to the case in which 𝐴

is a 2 × 2 matrix with real eigenvalues. We saw that in this case the

eigenvectors define lines through the origin that are invariant under the

map 𝐴. If the two invariant lines are not identical, we say that the two

eigenvectors are linearly independent. This notion can be formulated
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as follows: two vectors u1 and u2 linearly independent if the equation

𝑎u1 + 𝑏u2 = 0 has no solution for any 𝑎, 𝑏 ∈ ℝ.

In the case of eigenvectors, it is always the case that if 𝜆1 ≠ 𝜆2 then

the two eigenvectors are linearly independent. There are also cases in

which u1 and u2 are linearly independent even though 𝜆1 = 𝜆2 (think

of diagonal matrices with equal entries in the diagonal, for instance).

We will, however, be concerned primarily with cases in which 𝜆1 ≠ 𝜆2.

Hence, the preceding criterion will suffice for our purposes. (The other

cases are covered in courses on linear algebra.)

A consequence of linear independence is that we can write any vector

uniquely as a linear combination of two eigenvectors. Suppose that u1

and u2 are linearly independent eigenvectors of a 2 × 2 matrix; then any

vector x ∈ ℝ2
can be written as

x = 𝑎1u1 + 𝑎2u2 ,

where 𝑎1 , 𝑎2 ∈ ℝ are uniquely determined. We will not prove this

statement but will examine what we can do with it.

If we apply 𝐴 to x = 𝑎1u1 + 𝑎2u2 we can use the linearity of 𝐴 to show

that

𝐴x = 𝑎1𝐴u1 + 𝑎2𝐴u2 = 𝑎1𝜆1u1 + 𝑎2𝜆2u2 ,

the last step because u1 , u2 are eigenvectors of 𝐴.

This representation of x is particularly useful if we apply 𝐴 repeatedly.

Applying 𝐴 to 𝐴x, we find that

𝐴2x = 𝐴(𝑎1𝜆1u1 + 𝑎2𝜆2u2) = 𝑎1𝜆1𝐴u1 + 𝑎2𝜆2𝐴u2 = 𝑎1𝜆
2

1
u1 + 𝑎2𝜆

2

2
u2.

Continuing in this way yields

𝐴𝑛x = 𝑎1𝜆
𝑛
1
u1 + 𝑎2𝜆

𝑛
2
u2.

Thus, instead of multiplying 𝐴 with itself 𝑛 times (which is rather time

consuming), we can use this equations, which just amounts to adding

two vectors (a much faster task).

Example 9.2.1 (A neuron-firing model, continued) In Example 9.0.1

we saw that 𝑥𝑛 could be calculated as 𝑃𝑛x0, where 𝑃 =

(
4/5 1/3

1/5 2/3

)
.

Let’s calculate the eigenvalues and eigenvectors of this matrix:

det(𝑃 − 𝜆𝐼) =
����4/5 − 𝜆 1/3

1/5 2/3 − 𝜆

���� = 0,

which yields the characteristic equation 15𝜆2 − 22𝜆 + 7 = 0, with

solutions 𝜆1 = 1 and 𝜆2 = 7/15.

The corresponding eigenvectors (do the calculations yourself) are:

u1 = (5, 3) and u2 = (1,−1).

Then, x0 = (0, 1) = 𝑎u1 + 𝑏u2 is a system of linear equations with
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solution (do it!) 𝑎 = 1/8, 𝑏 = −5/8, and so:

x𝑛 =

(
5/8

3/8

)
−

(
7

15

)𝑛 (
−5/8

5/8

)
.

Note that (7/15)𝑛 becomes very small very rapidly (for instance,

(7/15)10 ≈ 0.0005) and therefore we can write

x𝑛 ≈
(
5/8

3/8

)
for 𝑛 sufficiently large. This is what we had found originally!
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Exercises

Exercise 9.1 Find all the eigenvalues and eigenvectors of the following

matrices:

1.

(
2 3

0 −1

)
2.

(
0 0

1 −3

) 3.

(
−1 2

4 1

)
4.

(
5 3

−6 −4

)
Exercise 9.2 For a 2 × 2 matrix 𝐴 =

(
𝑎 𝑏

𝑐 𝑑

)
, there is a faster way

to calculate eigenvalues, using the trace of 𝐴, tr 𝐴 = 𝑎 + 𝑑 and its

determinant det𝐴 = 𝑎𝑑 − 𝑏𝑐.

1. Show that the characteristic equation of𝐴 is𝜆2−(tr 𝐴)𝜆+det𝐴 = 0.

2. Since the characteristic equation will eventually be factores as

(𝜆 − 𝜆1)(𝜆 − 𝜆2) = 0, show that tr 𝐴 = 𝜆1 + 𝜆2 and det𝐴 = 𝜆1𝜆2.

3. Solve the system 𝜆1 + 𝜆2 = tr 𝐴,𝜆1𝜆2 = det𝐴 to show that

𝜆1,2 =
tr 𝐴

2

±

√(
tr 𝐴

2

)
2

− det𝐴.

4. Use this formula to calculate the eigenvalues of the matrices in

exercise 9.1.

Exercise 9.3 Let 𝐴 =

(
−1 1

0 2

)
.

1. Find all eigenvalues and eigenvectors of 𝐴.

2. Express x = (1,−3) as a linear combination of the eigenvectors of

𝐴.

3. Use the previous results to calculate 𝐴20x.

Exercise 9.4 Let 𝐴 =

(
−1 0

2 1

)
. Find 𝐴15

(
2

0

)
without using a calculator.

Exercise 9.5 Fibonacci proposed a model for the population growth of

rabbits by means of an iterated discrete map: the number of young rabbits

at time 𝑛 + 1, 𝑌𝑛+1 is equal to the number of adult rabbits at time 𝑛, 𝐴𝑛
(that is, every adult rabbit has one little rabbit every time step), while

𝐴𝑛+1 = 𝐴𝑛 + 𝑌𝑛 as we assume that no rabbits die. The whole system can

be written in matrix form as follows:(
𝑌𝑛+1

𝐴𝑛+1

)
=

(
0 1

1 1

) (
𝑌𝑛
𝐴𝑛

)
, 𝑇 =

(
0 1

1 1

)
.

1. If 𝑌0 = 1, 𝐴0 = 0, calculate 𝐴1 , 𝐴2 , 𝐴3 , . . . . This list of numbers is

called the Fibonacci sequence.

2. Check that you can also get the same Fibonacci sequence calculating

𝐴𝑛+2 = 𝐴𝑛+1 +𝐴𝑛 , starting from 𝐴0 = 0, 𝐴1 = 1. Try to reason why

the two ways of expressing this problem are equivalent.

3. Find the eigenvalues and eigenvectors of the transition matrix 𝑇.

4. Since (𝑌𝑛 , 𝐴𝑛) = 𝑇𝑛(𝑌0 , 𝐴0), use the eigenvalues and eigenvectors

of 𝑇 to calculate (𝑌𝑛 , 𝐴𝑛) without calculating any power.
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5. For large 𝑛, what is the fraction 𝐴𝑛/𝑌𝑛? [HINT: think of what

happens to the smaller eigenvalue as 𝑛 becomes very large.]

Exercise 9.6 A seabird colony consists of two classes of birds: immature

birds that do not breed and adult birds that do breed. Assume that the

number of immature birds is denoted by 𝐼𝑡 and the number of mature

birds by 𝑀𝑡 . We model the changes in the sizes of two classes of birds

from one year to the next using a Leslie matrix model:(
𝐼𝑡+1

𝑀𝑡+1

)
= 𝐿

(
𝐼𝑡
𝑀𝑡

)
, 𝐿 =

(
0.5 2

0.3 0.9

)
.

Show that the bird population is predicted to grow without bound and

show that the ratio between 𝑀𝑡 and 𝑌𝑡 becomes stable as 𝑡 → ∞.

Exercise 9.7 Denote the owl and wood rat populations at time 𝑘 by

x𝑘 = (𝑂𝑘 , 𝑅𝑘), where 𝑘 is the time in months,𝑂𝑘 is the number of owls in

the region studied, and 𝑅𝑘 is the number of rats (measured in thousands).

Suppose (
𝑂𝑘+1

𝑅𝑘+1

)
=

(
0.5 0.4

−𝑝 1.1

) (
𝑂𝑘

𝑅𝑘

)
=

(
0.5𝑂𝑘 + 0.4𝑅𝑘
−𝑝𝑂𝑘 + 1.1𝑅𝑘

)
,

where 𝑝 is a positive parameter to be specified. From the matrix we can

see that with no wood rats for food, only half of the owls will survive

each month, while with no owls as predators, the rat population will

grow by 10% per month. If rats are plentiful, the 0.4𝑅𝑘 term will tend to

make the owl population rise, while the negative term −𝑝𝑂𝑘 measures

the deaths of rats due to predation by owls. (In fact, 1000𝑝 is the average

number of rats eaten by one owl in one month.) Taking 𝑝 = 0.104:

1. Find the eigenvalues 𝜆1 ,𝜆2 and eigenvectors v1 , v2 of the transition

matrix 𝑇.

2. If x0 = 𝑎v1 + 𝑏v2, write x𝑘 = 𝑇 𝑘x0 as a linear combination of v1 and

v2.

3. Determine the evolution of this system when 𝑘 → ∞.

Exercise 9.8 If an 𝑛 × 𝑛 matrix has 𝑛 linearly independent eigenvectors,

we say it is diagonalizable, because we can write

𝐴 = 𝑃𝐷𝑃−1 ,

where 𝐷 is a diagonal matrix whose entries are the eigenvalues of 𝐴 and

𝑃 is the matrix whose columns are the eigenvectors of 𝐴.

For the following matrices, find the respective matrices 𝐷 and 𝑃 and

check that 𝐴 = 𝑃𝐷𝑃−1
:

1.

(
−2 12

−1 5

)
2.

(
𝑎 0

3(𝑎 − 𝑏) 𝑏

)
Exercise 9.9 Diagonalization also gives an easy way to calculate the

powers of a matrix:

1. Show that, if 𝐴 = 𝑃𝐷𝑃−1
, then 𝐴𝑛 = 𝑃𝐷𝑛𝑃−1

.

2. Use this fact to calculate 𝐴10
for the matrices in Exercise 9.8.
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As a way of motivation, we will see an example of a real 2× 2 matrix that

has no real eigenvalues:

Example 10.0.1 (Complex Eigenvalues) Find the eigenvalues of the

matrix 𝑅 =

(
0 −1

1 0

)
, the matrix of a rotation of angle 𝜋/2.

The characteristic equation is 𝜆2 + 1 = 0, which doesn’t have a real

solution: this is consistent with our expectation, as 𝑅 does not leave

any line invariant!

However, the fundamental theorem of algebra says that every polyno-

mial equation of degree 𝑛 has always 𝑛 roots, counting multiplicities.

But these roots will possibly be complex. In this example, there are

no real eigenvalues, but the characteristic equations has two complex

solutions, +
√
−1 and −

√
−1.

What does this mean for 𝑅? Before discussing this, we need to know

more about complex numbers. .

10.1 Introduction to Complex Numbers

Even though it is sometimes said that complex numbers arise in order to

find solutions to the equation 𝑥2 = −1, this is not what really happened.

Whenever a quadratic equation yielded complex solutions, authors

concluded that there was no solution at all, because what they were

really searching for was the intersection between the parabola and the 𝑥

axis. In fact, complex numbers arose in the context of cubic equations. In

1545, Girolamo Cardano published a formula to solve the general cubic

equation 𝑥3 = 3𝑝𝑥 + 2𝑞. The formula is

𝑥 =
3

√
𝑞 +

√
𝑞2 − 𝑝3 + 3

√
𝑞 −

√
𝑞2 − 𝑝3.

Notice that if 𝑝3 > 𝑞2
the solution involves dealing with square roots of

negative numbers, but in this case the solutions could not be dismissed

because they had an actual geometric meaning (the cubic always intersects

the 𝑥 axis). Almost thirty years after Cardano published his formula,

Rafael Bombelli worked out the following example: putting 𝑝 = 5, 𝑞 = 2

in the above cubic expression leads to 𝑥3 = 15𝑥 + 4, and the solution

given by Cardano’s formula is

𝑥 =
3

√
2 + 11𝑖 + 3

√
2 − 11𝑖.

The actual solution is 𝑥 = 4, and Bombelli realized that Cardano’s

formula would work if he could somehow prove that
3

√
2 + 11𝑖 = 2 + 𝑛𝑖

and
3

√
2 − 11𝑖 = 2 − 𝑛𝑖. In order for this to be true, he needed the sum of
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complex numbers to follow

(𝑎 + 𝑖𝑏) + (𝑐 + 𝑖𝑑) = (𝑎 + 𝑐) + 𝑖(𝑏 + 𝑑).

Also, to find the 𝑛 that made
3

√
2 + 11𝑖 = 2 + 𝑛𝑖, he needed to calculate

(2 + 𝑛𝑖)3 and so he proposed the following multiplication rule

(𝑎 + 𝑖𝑏)(𝑐 + 𝑖𝑑) = (𝑎𝑐 − 𝑏𝑑) + 𝑖(𝑎𝑑 + 𝑏𝑐),

where he used 𝑖2 = −1. Using these two rules, he was able to prove that

(2 ± 𝑖)3 = 2 ± 11𝑖, thus solving the equation.

It was not until the end of the eighteenth century when complex numbers

became prominent in mathematics. Wessel, Argand and Gauss indepen-

dently gave a geometric interpretation to complex numbers, where 𝑎 + 𝑏𝑖
is the point in the 𝑥𝑦-plane with Cartesian coordinates (𝑎, 𝑏). The plane is

now called the complex plane, denoted with the letter ℂ. In this geometric

light, the sum and multiplication rules become:

The sum 𝐴 + 𝐵 of two complex numbers is given by the

parallelogram rule of ordinary vector addition.

The product 𝐴𝐵 is a vector whose length is the product of 𝐴

and 𝐵, and whose angle is the sum of the angles of 𝐴 and 𝐵,

where the angle of a vector is the one it makes with the 𝑥-axis. The

correspondence between the algebraic and geometric rules for sum and

multiplication is not hard to prove, and it will be useful to keep in mind

in what follows.

10.2 Terminology and Notation

A complex number 𝑧 = 𝑥 + 𝑖𝑦 is a point in the complex plane, and

therefore has the same properties of a usual vector in ℝ2
. The length of

𝑧 is usually called modulus and denoted |𝑧|, and it is given by the usual

formula

√
𝑥2 + 𝑦2

.

The angle 𝑧 makes with the 𝑥 axis is its argument, we denote it by arg 𝑧.

The 𝑥 coordinate of 𝑧 is called its real part (Re 𝑧) and the 𝑦 coordinate is

the imaginary part (Im 𝑧).

Finally, the complex conjugate of 𝑧, denoted by 𝑧, is the number given by

𝑧 = 𝑥 − 𝑖𝑦.

If we write 𝑧 = 𝑥 + 𝑖𝑦 we say we are using the binomial form, but we could

mark the same point in the plane by using its length 𝑟 = |𝑧| and angle

𝜃 = arg 𝑧 as 𝑥 = 𝑟∠𝜃. This is called the polar form of the number 𝑥, and

it is especially useful when dealing with complex multiplication, as the

geometric interpretation of complex multiplication yields

(𝑟1∠𝜃1)(𝑟2∠𝜃2) = (𝑟1𝑟2)∠(𝜃1 + 𝜃2).

There is not a unique polar form for each complex number. Because

after turning 2𝜋 in a circle around the origin we go back to the point

where we started, every complex number has infinitely many arguments,
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and therefore infinitely many polar forms. All of them, however, are

summarized as

arg 𝑧 = Arg 𝑧 + 2𝜋𝑛, 𝑛 ∈ ℤ,

where Arg 𝑧 ∈ [−𝜋,𝜋] is called the principal argument of 𝑧. This very

simple fact about angles will become very important in the course of this

subject.

10.3 Geometric interpretation of complex
multiplication

It is not straightforward to understand the geometric meaning of complex

multiplication from the binomial form that we have seen before. However,

there is a trick. Note that the binomial form can also be written as

𝑧 = |𝑧| cos𝜃 + 𝑖|𝑧| sin𝜃. So if we take another complex number 𝑤 =

|𝑤| cos 𝜙 + 𝑖|𝑤| sin 𝜙, the multiplication becomes

𝑧𝑤 = |𝑧| · |𝑤|
[
(cos𝜃 cos 𝜙 − sin𝜃 sin 𝜙) + 𝑖(sin𝜃 cos 𝜙 + cos𝜃 sin 𝜙)

]
= |𝑧| · |𝑤|

[
cos(𝜃 + 𝜙) + 𝑖 sin(𝜃 + 𝜙

]
,

and so the result is a complex number whose modulus is the product of

the moduli of 𝑧 and 𝑤 and whose argument is the sum of the arguments

of 𝑧 and 𝑤. This connection will become much more intuitive in what

follows:

10.4 Euler’s Formula

Although we have just seen a way to write the polar form of the complex

number 𝑧 = 𝑟∠𝜃, we usually write it as 𝑧 = 𝑟𝑒 𝑖𝜃 . The equivalence

between these two forms comes from the following formula, discovered

by Leonhard Euler around 1740 (and thus called Euler’s formula):

𝑒 𝑖𝜃 = cos𝜃 + 𝑖 sin𝜃.

The complex number 𝑒 𝑖𝜃 lies in the unit circle and has angle 𝜃, as

evidenced by the right-hand side of Euler’s formula. As a result of this

formula, complex multiplication now becomes

(𝑟1𝑒 𝑖𝜃1)(𝑟2𝑒 𝑖𝜃2) = 𝑟1𝑟2𝑒
𝑖(𝜃1+𝜃2) ,

which is what we would have obtained from algebraically manipulating

𝑒 𝑖𝜃 using the rules for the real function 𝑒𝑥 . We will see that, in fact, this

is more than a coincidence.

Proof of Euler’s formula using power series

In Chapter 3 we saw that the power series for the exponential function

is

𝑒𝑥 =
∞∑
𝑛=0

𝑥𝑛

𝑛!

= 1 + 𝑥 + 𝑥2

2

+ 𝑥3

3!

+ . . .
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Euler wrote 𝑥 = 𝑖𝜃 in the above formula to obtain

𝑒 𝑖𝜃 =

∞∑
𝑛=0

𝑖𝑛𝜃𝑛

𝑛!

= 1 + 𝑖𝜃 − 𝜃2

2

− 𝑖𝜃
3

3!

+ . . .

where we have used the fact that 𝑖2 = −1, 𝑖3 = −𝑖 and 𝑖4 = 1. Separating

the real and imaginary parts of the right-hand side, we get

Re 𝑒 𝑖𝜃 = 1 − 𝜃2

2

+ 𝜃4

4!

− 𝜃6

6!

+ . . .

Im 𝑒 𝑖𝜃 = 𝜃 − 𝜃3

3!

+ 𝜃5

5!

− 𝜃7

7!

+ . . .

and it is obvious from inspection of these power series that Re 𝑒 𝑖𝜃 = cos𝜃
and Im 𝑒 𝑖𝜃 = sin𝜃.

10.5 Complex Multiplication as Matrix
Multiplication

When we multiply a given complex number 𝑧 = 𝑥 + 𝑖𝑦 by another

complex number 𝜆 = 𝑎 + 𝑏𝑖, the result is

𝜆𝑧 = (𝑎𝑥 − 𝑏𝑦) + 𝑖(𝑏𝑥 + 𝑎𝑦).

But what if we could understand 𝜆 and 𝑧 as a 2 × 2 matrix?

Consider two complex numbers 𝑧1 = 𝑎 + 𝑏𝑖 and 𝑧2 = 𝑐 + 𝑑𝑖 and their

product:

𝑧1𝑧2 = (𝑎 + 𝑏𝑖)(𝑐 + 𝑑𝑖) = (𝑎𝑐 − 𝑏𝑑) + 𝑖(𝑎𝑑 + 𝑏𝑐) =: 𝑧.

Since we can interpret the numbers 𝑧1 and 𝑧2 as the vectors (𝑎, 𝑏) ∈ ℝ2

and (𝑐, 𝑑) ∈ ℝ2
, respectively, what does it mean when we multiply 𝑧1 by

𝑧2? We haven’t defined any multiplication of vectors by vectors where

the result is a vector. But what if we could understand 𝑧1 and 𝑧2 as ‘2 × 2

matrices?

Let’s define two matrices:

𝑍1 =

(
𝑎 −𝑏
𝑏 𝑎

)
𝑍2 =

(
𝑐 −𝑑
𝑑 𝑐

)
.

Note that these matrices store the same information as 𝑧1 and 𝑧2, respec-

tively. Let’s compute their matrix product:

𝑍1𝑍2 =

(
𝑎 −𝑏
𝑏 𝑎

) (
𝑐 −𝑑
𝑑 𝑐

)
=

(
𝑎𝑐 − 𝑏𝑑 −(𝑎𝑑 + 𝑏𝑐)
𝑎𝑑 + 𝑏𝑐 𝑎𝑐 − 𝑏𝑑

)
=: 𝑍.

Comparing 𝑍 just above with 𝑧 in Equation 3, we see that 𝑍 is indeed

the matrix corresponding to the complex number 𝑧 = 𝑧1𝑧2. Thus, we can
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represent any complex number 𝑧 equivalently by the matrix:

𝑍 =

(
Re(𝑧) − Im(𝑧)
Im(𝑧) Re(𝑧)

)
,

and complex multiplication then simply becomes matrix multiplication.

Further note that we can write:

𝑍 = Re(𝑧)
(
1 0

0 1

)
+ Im(𝑧)

(
0 −1

1 0

)
,

i.e., the imaginary unit 𝑖 corresponds to the matrix(
0 −1

1 0

)
and 𝑖2 = −1 becomes:(

0 −1

1 0

) (
0 −1

1 0

)
= −

(
1 0

0 1

)
.

Writing 𝑧 = 𝑟𝑒 𝑖𝜃 = 𝑟(cos𝜃 + 𝑖 sin𝜃), we find

𝑍 = 𝑟

(
cos𝜃 − sin𝜃
sin𝜃 cos𝜃

)
,

corresponding to a stretch factor 𝑟 multiplied by a 2D rotation matrix.

In particular, multiplication by 𝑖 corresponds to the rotation with angle

𝜃 = 𝜋/2 and 𝑟 = 1, which is what we had seen in Example 10.0.1.
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Exercises

Exercise 10.1 Find real numbers 𝑥 and 𝑦 such that

43 + 𝑖𝑦
𝑥 − 𝑖5 = 4 + 𝑖3

Exercise 10.2 Compute

1. (2 − 𝑖)3,

2. 𝑖13
,

3.

1

𝑖
,

4.

1

1 + 2𝑖
,

5.

1 + 𝑖
1 − 𝑖 ,

6. 𝑖 + 𝑖2 + 𝑖3 + 𝑖4.

Exercise 10.3 Compute the complex conjugate of 𝑧 =
(
𝑎+𝑏𝑖
𝑎−𝑏𝑖

)
2

+
(
𝑎−𝑏𝑖
𝑎+𝑏𝑖

)
2

.

Exercise 10.4 Let 𝑧 ∈ ℂ, find the real and the imaginary part of

1. 𝑧 + 3𝑖,

2. 𝑖𝑧,

3. (1 + 𝑧)(𝑧̄ + 1)

in terms of the real and imaginary parts of 𝑧.

Exercise 10.5 Compute the modulus of the following complex numbers:

1. −𝑖,
2. 1 + 𝑖
3. 1 − 𝑖

4. (1 + 𝑖)2

5.

1

1 + 𝑖 ,
6.

1

(1 − 𝑖)2 ,

7. 1 − 𝑖
√

3.

Exercise 10.6 Find the principal argument of the following complex

numbers, and express it in radians:

1. 1 + 𝑖 2. (1 + 𝑖)−1
3. (1 + 𝑖)2 4. (1 + 𝑖)3

[Remember, the principal argument of a complex number is the only

argument 𝜃 that satisfies −𝜋 ≤ 𝜃 ≤ 𝜋.]

Exercise 10.7 Express the following numbers in binomial form (i.e. as

𝑎 + 𝑏𝑖, where 𝑎 and 𝑏 are the real and the imaginary part, respectively):

1. 𝑒
𝜋
4
𝑖 − 𝑒− 𝜋

4
𝑖 ,

2.

1 − 𝑒 𝜋
2
𝑖

1 + 𝑒 𝜋
2
𝑖
,

3. 𝑒𝜋𝑖(1 − 𝑒− 𝜋
3
𝑖).

Exercise 10.8 Express the following numbers in polar form (i.e. as 𝑟𝑒 𝑖𝜃,

where 𝑟 is the modulus and 𝜃 is the principal argument):

1. −𝑖,
2. 1 + 𝑖
3. 1 − 𝑖

4. (1 + 𝑖)2

5.

1

1 + 𝑖 ,
6.

1

(1 − 𝑖)2 ,

7. 1 − 𝑖
√

3.

Exercise 10.9 We can use Euler’s Formula to derive many relevant

trigonometric identities.

1. Find an expression for cos 3𝜃 and sin 3𝜃 in terms of cos𝜃 and sin𝜃.
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2. Express 2
4

cos
4 𝜃 in terms of cosines of multiples of theta. [HINT:

2 cos𝜃 = 𝑒 𝑖𝜃 + 𝑒−𝑖𝜃.]

Exercise 10.10 On December 21, 1807, an engineer named Joseph Fourier

announced to the prestigious French Academy of Sciences that an arbi-

trary function 𝑓 (𝑥) could be expanded in an infinite series of sines and

cosines. Specifically, let 𝑓 (𝑥) be defined on the interval −𝐿 ≤ 𝑥 ≤ 𝐿, and

compute the numbers

𝑎𝑛 =
1

𝐿

∫ 𝐿

−𝐿
𝑓 (𝑥) cos

𝑛𝜋𝑥
𝐿

𝑑𝑥, 𝑛 = 0, 1, 2, . . . (1)

and

𝑏𝑛 =
1

𝐿

∫ 𝐿

−𝐿
𝑓 (𝑥) sin

𝑛𝜋𝑥
𝐿

𝑑𝑥, 𝑛 = 1, 2, . . . (2)

Then, the infinite series

𝑎0

2

+
∞∑
𝑛=1

[
𝑎𝑛 cos

𝑛𝜋𝑥
𝐿

+ 𝑏𝑛 sin

𝑛𝜋𝑥
𝐿

]
(3)

converges to 𝑓 (𝑥).

Use Euler’s formula to express the coefficients of the Fourier series as

complex exponentials, so that

𝑓 (𝑥) =
∞∑

𝑛=−∞
𝑐𝑛𝑒

𝑖𝑛 𝜋𝑥
𝐿 .

What is the relationship between 𝑎𝑛 , 𝑏𝑛 and 𝑐𝑛?

Exercise 10.11 Find the eigenvalues of the following matrices and discuss

the geometric action of the corresponding linear transformation.

1.

(√
3 −1

1

√
3

)
2.

(
1 −4

1 1

)
3.

(
3 3

−2 2

)
4.

√
2

2

(
1 −1

1 1

)
.

Exercise 10.12 The equation 𝑧 = (𝑟𝑒 𝑖𝜃)1/𝑛 has 𝑛 complex roots, given by

the following formulas:

𝑧𝑘 = 𝑟𝑘 𝑒
𝑖𝜃𝑘 , 𝑟𝑘 = 𝑟1/𝑛 , 𝜃𝑘 =

𝜃 + 2𝜋𝑘
𝑛

, 𝑘 = 0, 1, . . . , 𝑛 − 1.

Find the following roots:

1. (−𝑖)1/2 ,

2.

(
− 1

2
−

√
3

2
𝑖

)
1/2

,

3. (−1)1/4 ,

4. 1
1/6.
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Differential Equations
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In Chapter 6 we saw that differential equations in one-dimensional

phase spaces were extremely confined— all trajectories are forced to

move monotonically or remain constant. In higher-dimensional phase

spaces, trajectories have much more room to maneuver, and so a wider

range of dynamical behavior becomes possible. Rather than attack all

this complexity at once, we begin with the simplest class of higher-

dimensional systems, namely linear systems in two dimensions. These

systems are interesting in their own right, and, as we’ll see later, they also

play an important role in the classification of fixed points of nonlinear

systems. We begin with some definitions and examples.

11.1 Definitions and Examples

A two-dimensional linear system is a system of the form{
¤𝑥 = 𝑎𝑥 + 𝑏𝑦,
¤𝑦 = 𝑐𝑥 + 𝑑𝑦,

where 𝑎, 𝑏, 𝑐, 𝑑 are parameters. If we use boldface to denote vectors, this

system can be written more compactly in matrix form as

¤x = 𝐴x,

where

𝐴 =

(
𝑎 𝑏

𝑐 𝑑

)
and x =

(
𝑥

𝑦

)
.

Such a system is linear in the sense that if x1 and x2 are solutions, then so

is any linear combination 𝑐1x1 + 𝑐2x2. Notice that x = 0 when x = 0, so

x∗ = 0 is always a fixed point for any choice of 𝐴.

The solutions of x = 𝐴x can be visualized as trajectories moving on the

(𝑥, 𝑦) plane, in this context called the phase plane. Our first example

presents the phase plane analysis of a familiar system.

Example 11.1.1 As discussed in elementary physics courses, the vi-

brations of a mass hanging from a linear spring are governed by the

linear differential equation

𝑚 ¥𝑥 + 𝑘𝑥 = 0, (11.1)

where𝑚 is the mass, 𝑘 is the spring constant, and 𝑥 is the displacement

of the mass from equilibrium. Let’s give a phase plane analysis of this

simple harmonic oscillator.

This system can actually be solved analytically. But that’s precisely
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Figure 11.1: Vector field for the simple

harmonic oscillator, with two trajectories

plotted on top of it. The initial conditions

are 𝑥0 = 1.5, 𝑣0 = 0 (blue line) and 𝑥0 =

1, 𝑣0 = 0.5 (orange line).

what makes linear equations so special! For the nonlinear equations

of ultimate interest to us, it’s usually impossible to find an analytical

solution. We want to develop methods for deducing the behavior of

equations like (11.1) without actually solving them.

The motion in the phase plane is determined by a vector field that

comes from the differential equation (11.1). To find this vector field, we

note that the state of the system is characterized by its current position

𝑥 and velocity 𝑣; if we know the values of both 𝑥 and 𝑣, then (11.1)

uniquely determines the future states of the system. Therefore, we

rewrite the system in terms of 𝑥 and 𝑣, as follows:{
¤𝑥 = 𝑣,

¤𝑣 = − 𝑘
𝑚 𝑥.

The first equation is just the definition of velocity, and the second is

the differential equation (11.1) rewritten in terms of 𝑣. To simplify the

notation, let 𝜔2 = 𝑘
𝑚 . Then the system becomes{

¤𝑥 = 𝑣,

¤𝑣 = −𝜔2𝑥.

This system assigns a vector ( ¤𝑥, ¤𝑣) = (𝑣,−𝜔2𝑥) at each point (𝑥, 𝑣),
and therefore represents a vector field on the phase plane.

For example, let’s see what the vector field looks like when we’re on the

𝑥-axis. Then 𝑣 = 0 and so ( ¤𝑥, ¤𝑣) = (0,−𝜔2𝑥). Hence the vectors point

vertically downward for positive 𝑥 and vertically upward for negative

𝑥 (Figure 11.1). As 𝑥 gets larger in magnitude, the vectors (0,−𝜔2𝑥)
get longer. Similarly, on the 𝑣-axis, the vector field is ( ¤𝑥, ¤𝑣) = (𝑣, 0),
which points to the right when 𝑣 > 0 and to the left when 𝑣 < 0. As we

move around in phase space, the vectors change direction as shown in

Figure 11.1.

Just as in Chapter 6, it is helpful to visualize the vector field in terms of

the motion of an imaginary fluid. In the present case, we imagine that

a fluid is flowing steadily on the phase plane with a local velocity given

by ( ¤𝑥, ¤𝑣) = (𝑣,−𝜔2𝑥). Then, to find the trajectory starting at (𝑥0 , 𝑣0),
we place an imaginary particle or phase point at (𝑥0 , 𝑣0) and watch

how it is carried around by the flow.

The flow in Figure 11.1 swirls about the origin. The origin is special,

like the eye of a hurricane: a phase point placed there would remain

motionless, because ( ¤𝑥, ¤𝑣) = (0, 0) when (𝑥, 𝑣) = (0, 0); hence the

origin is a fixed point. But a phase point starting anywhere else would

circulate around the origin and eventually return to its starting point.

Such trajectories form closed orbits, as shown in Figure 11.1. Figure 11.1

is called the phase portrait of the system—it shows the overall picture

of trajectories in phase space.

11.2 Solving Linear Systems

The trajectories plotted in Figure 11.1 can actually be obtained analytically.

Given the system ¤x = 𝐴x, its solutions will be vector-valued functions:
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1: Note that now we need two initial con-

ditions in order to completely determine

the system.

2: The case where 𝐴 has two equal eigen-

values is a bit different and we will not see

it in this course.

3: This is sometimes called the supeposi-
tion principle
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Figure 11.2: Vector field for the system

in Example 11.2.1, with the invariant lines

defined by the eigenvectors of the matrix

𝐴 in black and some trajectories in green.

Note that the trajectories approach the

origin from one direction, but they go

away from it from the other.

that is, if x(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) we will have two functions. As in Chapter

6, we will see that every system of differential equations admits infinite

solutions, that we will need to determine using initial conditions.
1

Now,

we are going to try something crazy. Remember that the one-variable

differential equation ¤𝑥 = 𝑎𝑥 had as solution 𝑥(𝑡) = 𝑒 𝑎𝑡? Since the two-

dimensional equation looks similar, maybe we can try a solution of the

type x(𝑡) = 𝑒𝜆𝑡v, where 𝜆 is a constant and v is a vector. If we plug it into

the system,

¤x(𝑡) = 𝜆𝑒𝜆𝑡v = 𝐴x = 𝐴𝑒𝜆𝑡v =⇒ 𝜆v = 𝐴v.

So this works if𝜆 is an eigenvalue of𝐴 and v its corresponding eigenvector.

And since we know that 𝐴 will (almost) always have two different

eigenvalues,
2

and that if we have two different solutions their linear

combination is also a solution
3

, we can write the general solution of the

system as follows:

x(𝑡) = 𝑐1𝑒
𝜆1𝑡v1 + 𝑐2𝑒

𝜆2𝑡v2.

(Note that this is very similar to the discrete systems we saw in Section

9.2.

Example 11.2.1 Solve the following system of differential equations:{
¤𝑥 = 2𝑥 − 2𝑦

¤𝑦 = 2𝑥 − 3𝑦

The eigenvalues of the matrix

(
2 −2

2 −3

)
are 𝜆1 = 1, v1 = (2, 1) and

𝜆2 = −2, v2 = (1, 2). So the general equation for the system will be(
𝑥(𝑡)
𝑦(𝑡)

)
= 𝑐1𝑒

𝑡

(
2

1

)
+ 𝑐2𝑒

−2𝑡

(
1

2

)
.

The constants 𝑐1 and 𝑐2 will have to be determined by the initial

conditions 𝑥(0) and 𝑦(0). For instance, if 𝑥0 = −1, 𝑦0 = 4, we make

𝑡 = 0 in the solution above and solve the system(
−1

4

)
= 𝑐1

(
2

1

)
+ 𝑐2

(
1

2

)
,

which has as solution 𝑐1 = −2, 𝑐2 = 3. Try to get an intuitive under-

standing of what is happening with the trajectories by plotting the

invariant lines and sketching the vector field (Figure 11.2).

11.3 Equilibria and Stability

We have seen that the zero vector is always a fixed point of the system

¤x = 𝐴x. If det𝐴 = 0 there will be other fixed points:
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4: Remember that, because of Euler’s for-

mula, we can write complex exponentials

as sums of sines and cosines.

Example 11.3.1 Take the system{
¤𝑥 = 3𝑥 + 𝑦
¤𝑦 = 6𝑥 + 2𝑦

It is obvious that (0, 0) is a fixed point, because ¤𝑥(0, 0) = 0 and

¤𝑦(0, 0) = 0. But we can also see that any point that satisfies 3𝑥 = −𝑦
will also be a fixed point. In this case, we say there exists a degenerate
line of fixed points.

Let’s assume det𝐴 ≠ 0. Then (0, 0) is the only solution of the system

𝐴x = 0, that is, the only fixed point of the system. From the general

solution for the linear system that we wrote above, we can see that the

behavior of the trajectories as 𝑡 → ∞ will depend on the values of the

eigenvalues of 𝐴.

First, it’s useful to introduce some language that allows us to discuss the

stability of different types of fixed points. This language will be especially

useful when we analyze fixed points of nonlinear systems in Chapter 12.

We say that 𝑥∗ = 0 is an attracting fixed point if all trajectories that start

near 𝑥∗ approach it as 𝑡 → ∞. That is, 𝑥(𝑡) → 𝑥∗ as 𝑡 → ∞. In fact, 𝑥∗

attracts all trajectories in the phase plane, so it could be called globally
attracting. When trajectories go far from the fixed point when 𝑡 → ∞ we

say that the fixed point is unstable. Finaly, if the trajectories don’t go

either toward nor away from the fixed point, we say it is neutrally stable
(Figure 11.1).

11.4 Classification of Fixed Points

We can show the type and stability of all the different fixed points,

depending on the eigenvalues:

Different real eigenvalues

If both eigenvectors are real but different, we have three cases:

1. If 𝜆1 ,𝜆2 < 0 the origin is stable. The trajectories will approach it

getting closer to the invariant lines defined by the eigenvectors. In

this case we say the origin is a stable node.

2. If𝜆1 ,𝜆2 > 0 the origin is unstable. The trajectories will go away from

it getting closer to the invariant lines defined by the eigenvectors.

Here we say the origin is an unstable node.

3. If 𝜆1 < 0 and 𝜆2 > 0, we have a saddle point, such as in Example

11.2.1. Here the origin is still unstable, but one of the directions is

attracting and so it merits a special mention.

Complex eigenvalues

If the eigenvalues are complex𝜆1,2 = 𝑎±𝑏𝑖, then we will have oscillations.
4

Whether the origin is stable or unstable will depend on the real part of

𝜆1,2. Because of the oscillations, we now refer to the origin as a spiral. If
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Figure 11.3: Vector field for the system in

Example 11.4.1, some trajectories in green.

the eigenvalues are purely imaginary, the trajectories will oscillate the

origin without going to or away from it, and we say that the origin is a

(neutrally stable) center (recall example 11.1.1!).

Example 11.4.1 Study the behavior of the system{
¤𝑥 = 𝑥 − 4𝑦

¤𝑦 = 𝑥 + 𝑦
.

The matrix

(
1 −4

1 1

)
has eigenvalues 𝜆1,2 = 1 ± 2𝑖 and corresponding

eigenvectors v1,2 = (±2𝑖 , 1) (it is not hard to show that complex

eigenvalues and eigenvectors always come in pairs of conjugates when

the matrix 𝐴 is real). Then the general solution is(
𝑥(𝑡)
𝑦(𝑡)

)
= 𝑐1𝑒

(1+2𝑖)𝑡
(
2𝑖

1

)
+ 𝑐2𝑒

(1−2𝑖)𝑡
(
−2𝑖

1

)
.

But wait a minute! The original system was real! How come we get

complex solutions! Well, not so fast. Let’s apply Euler’s formula and

see what happens. Since 𝑒(1+2𝑖)𝑡 = 𝑒 𝑡(cos 2𝑡 + 𝑖 sin 2𝑡), we have:(
𝑥(𝑡)
𝑦(𝑡)

)
= 𝑐1𝑒

𝑡

(
−2 sin 2𝑡 + 2𝑖 cos 2𝑡

cos 2𝑡 + 𝑖 sin 2𝑡

)
+ 𝑐2𝑒

𝑡

(
−2 sin 2𝑡 − 2𝑖 cos 2𝑡

cos 2𝑡 − 𝑖 sin 2𝑡

)
,

and note that the two vectors are conjugate! (this always happens, by

the way). With a bit of algebra, we obtain(
𝑥(𝑡)
𝑦(𝑡)

)
= (𝑐1 + 𝑐2)𝑒 𝑡

(
−2 sin 2𝑡

cos 2𝑡

)
+ 𝑖(𝑐1 − 𝑐2)𝑒 𝑡

(
2 cos 2𝑡

sin 2𝑡

)
,

and the two vectors are the real and imaginary parts of 𝑒(1+2𝑖)𝑡v1.

Since 𝑐1 + 𝑐2 and 𝑖(𝑐1 − 𝑐2) are arbitrary constants that will have to be

determined by the initial conditions (in this case 𝑖(𝑐1 − 𝑐2) = 𝑥0 and

𝐶1 + 𝑐2 = 𝑦0), we can simply call them 𝑘1 and 𝑘2 and write(
𝑥(𝑡)
𝑦(𝑡)

)
= 𝑘1𝑒

𝑡

(
−2 sin 2𝑡

cos 2𝑡

)
+ 𝑘2𝑒

𝑡

(
2 cos 2𝑡

sin 2𝑡

)
,

and there are no imaginary numbers any longer.

Note that this system will oscillate around the origin, getting farther

and farther away from it (Figure 11.3).

In short, if the matrix 𝐴 has complex eigenvalue 𝜆 and corresponding

eigenvector v (no need to consider their conjugates), the general solution

becomes

x(𝑡) = 𝑐1Re (𝑒𝜆𝑡v) + 𝑐2Im (𝑒𝜆𝑡v).



Exercises 103

Exercises

Exercise 11.1 For the following systems, find (when possible) the general

solution, plot the phase portrait and classify the fixed point. If the

eigenvectors are real, indicate them:

1.

{
¤𝑥 = 𝑦

¤𝑦 = −2𝑥 − 3𝑦

2.

{
¤𝑥 = 3𝑥 − 4𝑦

¤𝑦 = 𝑥 − 𝑦

3.

{
¤𝑥 = 5𝑥 + 2𝑦

¤𝑦 = −17𝑥 − 5𝑦

4.

{
¤𝑥 = 4𝑥 − 3𝑦

¤𝑦 = 8𝑥 − 6𝑦

5.

{
¤𝑥 = 5𝑥 + 10𝑦

¤𝑦 = −𝑥 − 𝑦

6.

{
¤𝑥 = −3𝑥 + 2𝑦

¤𝑦 = 𝑥 − 2𝑦

7.

{
¤𝑥 = −3𝑥 + 4𝑦

¤𝑦 = −2𝑥 + 3𝑦

8.

{
¤𝑥 = 𝑦

¤𝑦 = −𝑥 − 2𝑦

Exercise 11.2 (Love Affairs, by Steven Strogatz) Romeo is in love with

Juliet, but in our version of this story, Juliet is a fickle lover. The more

Romeo loves her, the more Juliet wants to run away and hide. But when

Romeo gets discouraged and backs off, Juliet begins to find him strangely

attractive. Romeo, on the other hand, tends to echo her: he warms up

when she loves him and grows cold when she hates him.

Let

𝑅(𝑡) = Romeo’s love/hate for Juliet at time 𝑡

𝐽(𝑡) = Juliet’s love/hate for Romeo at time 𝑡.

Positive values of 𝑅 and 𝐽 signify love, while negative values signify hate.

Then a model for their star-crossed romance is{
𝑑𝑅
𝑑𝑡 = 𝑎𝐽
𝑑𝐽
𝑑𝑡 = −𝑏𝑅

where the parameters 𝑎 and 𝑏 are positive, to be consistent with the story.

Study the outcome of the system: will Romeo and Juliet find love?

Exercise 11.3 Now consider the forecast for lovers governed by the

general linear system {
𝑑𝑅
𝑑𝑡 = 𝑎𝑅 + 𝑏𝐽
𝑑𝐽
𝑑𝑡 = 𝑐𝑅 + 𝑑𝐽

where the parameters 𝑎, 𝑏, 𝑐, 𝑑 may have either sign. A choice of signs

specifies the romantic styles.

1. What happens if 𝑎 = 𝑑 < 0 and 𝑏 = 𝑐 > 0?

2. What if 𝑎 = 0, 𝑏 = 1, 𝑐 = −1 and 𝑑 = 1? Classify the fixed point at

the origin. Sketch 𝑅(𝑡) and 𝐽(𝑡) if 𝑅(0) = 1, 𝐽(0) = 0.

3. Suppose Romeo and Juliet react to each other, but not to themselves

(𝑎 = 𝑑 = 0, 𝑏, 𝑐 > 0). What happens?

Exercise 11.4 A drug is administered to a person in a single dose. We

assume that the drug does not accumulate in body tissue, but is filtered

from the blood by the kidneys which then pass the drug into the urine.
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We denote the amount of drug in the body at time 𝑡 by 𝑥1(𝑡) and in

the urine at time 𝑡 by 𝑥2(𝑡). Initially, 𝑥1(0) = 𝐾 and 𝑥2(0) = 0. Suppose

a fraction 𝑘1 of the drug is filtered out by the kidneys in each unit of

time. Then the movement of the drug between the body and the urine is

modeled by {
¤𝑥1 = −𝑘1𝑥1

¤𝑥2 = 𝑘1𝑥1

Solve for 𝑥1(𝑡) and 𝑥2(𝑡).

Exercise 11.5 Write the general solution of the harmonic oscillator

𝑚 ¥𝑥 + 𝑘𝑥 = 0,

seen in Example 11.1.1. Find the particular solution if 𝑥(0) = 0, ¤𝑥(0) = 1.

Exercise 11.6 Disturbances in forests (wind, fire, etc.) create gaps by

killing trees. These gaps are eventually filled by new trees. We will model

this process by a two-compartment model. We denote by 𝑥1(𝑡) the area

occupied by gaps and by 𝑥2(𝑡) the area occupied by adult trees. We

assume that the dynamics are given by{
¤𝑥1 = −0.2𝑥1 + 0.1𝑥2

¤𝑥2 = 0.2𝑥1 − 0.1𝑥2

1. Show that 𝑥1(𝑡) + 𝑥2(𝑡) is a constant. Denote the constant by A and

give its meaning.

2. Let 𝑥1(0) + 𝑥2(0) = 20. Use this to replace 𝑥2(𝑡) therefore reducing

the system to one variable ¤𝑥1 = 2 − 0.3𝑥1.

3. Solve the system and determine what fraction of the forest is

occupied by adult trees at time 𝑡 when 𝑥1(0) = 2 and 𝑥2(0) = 18.

What happens as 𝑡 → ∞?

Exercise 11.7 What happens to the system ¤x = 𝐴x if the matrix 𝐴 has

two equal eigenvalues? Study the evolution of the system by sketching

the phase portrait:

1. 𝐴 =

(
3 0

0 3

)
2. 𝐴 =

(
3 1

0 3

)



1: The concepts are the same when we

have more than two equations, but the

calculations become more involved.

Systems of Nonlinear Differential
Equations 12

12.1 Introduction

Generally, we are interested in systems of differential equations of the

form

𝑑𝑥1

𝑑𝑡
= 𝑓1(𝑥1 , 𝑥2 , . . . , 𝑥𝑛)

𝑑𝑥2

𝑑𝑡
= 𝑓2(𝑥1 , 𝑥2 , . . . , 𝑥𝑛)
...

𝑑𝑥𝑛

𝑑𝑡
= 𝑓𝑛(𝑥1 , 𝑥2 , . . . , 𝑥𝑛) (12.1)

where 𝑓𝑖 : ℝ𝑛 → ℝ, for 𝑖 = 1, 2, . . . , 𝑛. We assume that the functions 𝑓𝑖 ,

𝑖 = 1, 2, . . . , 𝑛, do not explicitly depend on 𝑡; this system is therefore

called autonomous.

We no longer assume that the functions 𝑓𝑖 are linear, as in Chapter 11.

Using vector notation, we can write this system in the form

𝑑x
𝑑𝑡

= f(x),

where x = (𝑥1 , 𝑥2 , . . . , 𝑥𝑛), and f(x) is a vector-valued function f : ℝ𝑛 →
ℝ𝑛

with components 𝑓𝑖 : ℝ𝑛 → ℝ, 𝑖 = 1, 2, . . . , 𝑛. The function f(x)
defines a vector field, just as in the linear case.

Unless the functions 𝑓𝑖 are linear, it is typically not possible to find explicit

solutions of systems of differential equations. If we want to solve such

systems, we frequently must use numerical methods. Instead of trying to

find solutions, we will focus on fixed points and their stability.

Just like for linear systems, we say that a point x = (𝑥1 , 𝑥2 , . . . , 𝑥𝑛) is a

fixed point (also called critical point or equilibrium) of the equation

𝑑x
𝑑𝑡 = f(x), if

𝑑x
𝑑𝑡

= f(x) = 0.

This implies that if we start the solution of a system of differential

equations at an equilibrium point, it will stay there for all later times.

As in the linear case, a solution might not return to an equilibrium after

a small perturbation; if the solution returns to the equilibrium, we call it

stable, while if the solution does not return, then we call the equilibrium

unstable. In the next section we will see how to analyze the stability of a

fixed point analytically. We will restrict our discussion to systems of two

equations in two variables.
1
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12.2 Stability of fixed points

For any fixed point x∗ that satifies f(x∗) = 0, we look at what happens to

a small perturbation to determine its stability. That is, we look at how

x = x∗ + 𝜼 changes under the dynamics ¤x = f(x) assuming that 𝜼 is very

small:

𝑑

𝑑𝑡
(x∗ + 𝜼) = 𝑑𝜼

𝑑𝑡
= f(x∗ + 𝜼).

The linearization of f(x) about x∗ is

f(x) ≈ f(x∗) + 𝐷f(x∗)𝜼 = 𝐷f(x)𝜼,

since f(x∗) = 0. Here 𝐷f(x∗) is the Jacobian matrix evaluated at x∗:

Definition 12.2.1 (Jacobian matrix, 2 × 2 case) Let 𝑓 : ℝ2 → ℝ2. The
Jacobian matrix of 𝑓 is the 𝑚 × 𝑛 matrix of all partial derivatives of 𝑓 , given
by

𝐷f(x) =
( 𝜕 𝑓1
𝜕𝑥

𝜕 𝑓1
𝜕𝑦

𝜕 𝑓2
𝜕𝑥

𝜕 𝑓2
𝜕𝑦

)
,

where 𝜕 𝑓1
𝜕𝑥 is the partial derivative of 𝑓1 with respect to 𝑥, which is caclulated

by taking 𝑦 as a constant and computing the derivative of 𝑓1 as a function of
𝑥 only (and similarly with the remaining partial derivatives). The Jacobian
matrix is sometimes denoted by 𝐽f(x).

Example 12.2.1 1. If 𝑓 (𝑥, 𝑦) = 𝑥2𝑦 + 𝑦3
, find

𝜕 𝑓
𝜕𝑥 and

𝜕 𝑓
𝜕𝑦 .

To find

𝜕 𝑓
𝜕𝑥 we hold 𝑦 constant and differentiate only with respect

to 𝑥; this yields

𝜕

𝜕𝑥
(𝑥2𝑦 + 𝑦3) = 𝜕 𝑓

𝜕𝑥
= 2𝑥𝑦.

Similarly, to find

𝜕 𝑓
𝜕𝑦 we hold 𝑥 constant and differentiate only

with respect to 𝑦:

𝜕

𝜕𝑦
(𝑥2𝑦 + 𝑦3) = 𝜕 𝑓

𝜕𝑦
= 𝑥2 + 3𝑦2.

2. Find

𝜕 𝑓
𝜕𝑥 if 𝑓 (𝑥, 𝑦) = 𝑥𝑦

𝑥2+𝑦2
. By the quotient rule,

𝜕 𝑓

𝜕𝑥
=
𝑦(𝑥2 + 𝑦2) − 2𝑥2𝑦

(𝑥2 + 𝑦2)2 =
𝑦(𝑦2 − 𝑥2)
(𝑥2 + 𝑦2)2 .

Our previous discussion means that we can approximate f(x + 𝜼) by its

linearization 𝐷f(x)𝜼, leading to

𝑑𝜼

𝑑𝑡
= 𝐷f(x)𝜼,

which is the linear approximation of the dynamics of the perturbation

𝜼.
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Note that𝐷f(x) is a 2×2 matrix of constants, so we have a linear system of

equations. The eigenvalues of the matrix𝐷f(x∗) allow us to determine the

nature of the equilibrium, just like in Section 11.4. This is a local analysis,

just as in the case of a single differential equation, since the linearization

is a good approximation only as long as we are sufficiently close to the

point about which we linearized. In the limit cases, where 𝜆1 = 𝜆2 or if

𝜆 is purely imaginary, or if one of the eigenvalues is zero, the behavior

may differ from the linearized case. In these cases, the nonlinear terms

cannot reasonably be neglected. There are additional methods that one

can use to analyze the stability of equilibria from boundary regions, but

these methods are beyond the scope of this course. You need to know

that linearization cannot be trusted for these equilibria, and you may

regard them as being unclassifiable for the time being.

The main challenge when identifying equilibria in nonlinear equations

is that we must solve a system of equations to find all the points where

f(x) = 0. These equations will, in general, be nonlinear, so we cannot solve

them using general methods. Typically, we must use one of the equations

to eliminate a variable; that is, we must rewrite the other equation in

terms of a single variable. We may then solve the rewritten equation in a

single variable. Let’s see an example:

Example 12.2.2 Consider the system

𝑑𝑥

𝑑𝑡
= 𝑥 − 2𝑥2 − 2𝑥𝑦

𝑑𝑦

𝑑𝑡
= 4𝑦 − 5𝑦2 − 7𝑥𝑦.

(12.2)

To find equilibria, we set the right-hand sides of (12.2) equal to zero:

𝑥 − 2𝑥2 − 2𝑥𝑦 = 0 =⇒ 𝑥(1 − 2𝑥 − 2𝑦) = 0,

4𝑦 − 5𝑦2 − 7𝑥𝑦 = 0 =⇒ 𝑦(4 − 5𝑦 − 7𝑥) = 0.

From the first equation, either 𝑥 = 0 or 2𝑥 + 2𝑦 = 1. Using these cases:

▶ If 𝑥 = 0, the second equation implies 𝑦(4 − 5𝑦) = 0, so 𝑦 = 0 or

𝑦 = 4

5
.

▶ If 2𝑥 + 2𝑦 = 1 or, equivalently, 𝑥 = 1

2
− 𝑦, we get:

𝑦

(
4 − 5𝑦 − 7

(
1

2

− 𝑦
))

= 0 =⇒ 𝑦

(
1

2

+ 2𝑦

)
= 0,

so 𝑦 = 0 or 𝑦 = − 1

4
. Substituting into 𝑥 = 1

2
− 𝑦, we find:

If 𝑦 = 0, 𝑥 =
1

2

; if 𝑦 = −1

4

, 𝑥 =
3

4

.

To summarize, there are four equilibria: (0, 0),
(
0, 4

5

)
,
(

1

2
, 0

)
,
(

3

4
,− 1

4

)
.
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To analyze stability, we compute the Jacobian matrix:

𝐷f =

( 𝜕 𝑓1
𝜕𝑥

𝜕 𝑓1
𝜕𝑦

𝜕 𝑓2
𝜕𝑥

𝜕 𝑓2
𝜕𝑦

)
=

(
1 − 4𝑥 − 2𝑦 −2𝑥

−7𝑦 4 − 10𝑦 − 7𝑥

)
.

Now, evaluate 𝐷f at each equilibrium:

▶ At (0, 0):
𝐷f(0, 0) =

(
1 0

0 4

)
.

The eigenvalues are 𝜆1 = 1 and 𝜆2 = 4. Both are positive, so

(0, 0) is an unstable node.

▶ At

(
0, 4

5

)
:

𝐷f
(
0,

4

5

)
=

(
− 3

5
0

− 28

5
−4

)
.

The eigenvalues are 𝜆1 = − 3

5
and 𝜆2 = −4. Both are negative, so(

0, 4

5

)
is a stable node.

▶ At

(
1

2
, 0

)
:

𝐷f
(
1

2

, 0

)
=

(
−1 −1

0
1

2

)
.

The eigenvalues are 𝜆1 = −1 and 𝜆2 = 4. One is positive and one

is negative, so

(
1

2
, 0

)
is a saddle point.

▶ At

(
3

4
,− 1

4

)
:

𝐷f
(
3

4

,−1

4

)
=

(
− 3

2
− 3

2

7

4

5

4

)
.

The eigenvalues are complex with negative real parts, so

(
3

4
,− 1

4

)
is a stable spiral.

12.3 Graphical Analysis of Nonlinear Systems

We have shown how to use linearization to understand how solutions

behave near the point equilibria of a system of nonlinear equations. What

other information can be gleaned from the system? In this section, we

describe a graphical method for analyzing the behavior of solutions over

the entire plane.

If ¤𝑥 = 𝑓1(𝑥, 𝑦) and ¤𝑦 = 𝑓2(𝑥, 𝑦), the curves

𝑓1(𝑥, 𝑦) = 0 and 𝑓2(𝑥, 𝑦) = 0

are called zero isoclines or nullclines, and they represent the points in

the 𝑥–𝑦 plane where either
𝑑𝑥
𝑑𝑡 = 0 or

𝑑𝑦

𝑑𝑡 = 0. The point where both

nullclines intersect is a fixed point, and we can study its stability using

linearization.

On the 𝑓1 = 0 isoclines,
𝑑𝑥
𝑑𝑡 = 0, so the direction vectors must point

either vertically upward (if 𝑓2 > 0) or vertically downward (if 𝑓2 < 0).

Similarly, on the 𝑓2 = 0 isocline,

𝑑𝑦

𝑑𝑡 = 0, so the direction vectors must point

horizontally, either to the right (if 𝑓1 > 0) or to the left (if 𝑓1 < 0). Here is

an important observation: if 𝑓1 > 0 at one point of an 𝑓2 = 0 isocline, then

𝑓1 > 0 along the entire isocline until we reach an equilibrium. This is
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Figure 12.1: Fixed points, nullclines and

trajectories of the system (12.2).
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Figure 12.2: Nullclines of the Fitzhugh-

Nagumo model with 𝑐 = 8 (blue) and

𝑐 = 1 (orange).

because 𝑓1 can only change its sign at a point where 𝑓1 = 0, and if 𝑓1 = 0

on the 𝑓2 = 0 isocline, that point is an equilibrium. Similarly, if a segment

of the 𝑓2 = 0 isocline does not contain an equilibrium, 𝑓1 must have the

same sign over that entire segment. We can use similar arguments to plot

the directions of the vector field in the regions between nullclines.

Example 12.3.1 The nullclines of the previous system (12.2) are

𝑑𝑥

𝑑𝑡
= 0 =⇒ 𝑥 = 0 or 𝑦 =

1

2

− 𝑥
𝑑𝑦

𝑑𝑡
= 0 =⇒ 𝑦 = 0 or 𝑦 =

4

7

− 5

7

𝑥.

The nullclines, fixed points and some trajectories of the system are

plotted in Figure ??.

12.4 Fitzhugh–Nagumo Model of a Neuron

We can think of a neuron as a bistable system; that is, it can exist in one of

two stable states: either with Na
+

ions outside and K
+

ions inside, or vice

versa. The neuron transitions between these states only when it receives

a sufficiently strong stimulus, making it an excitable system.

Fitzhugh (1961) and Nagumo et al. (1962) developed a model that captures

these dynamics, characterized by two variables:𝑉 , the voltage difference

across the neuron membrane, representing the net difference in charge

inside and outside the cell, and 𝑤, modeling the sodium and potassium

ion channels that regulate ion flow. The Fitzhugh–Nagumo equations

are given by:

𝑑𝑉

𝑑𝑡
= −𝑉(𝑉 − 𝑎)(𝑉 − 1) − 𝑤,

𝑑𝑤

𝑑𝑡
= 𝑉 − 𝑐𝑤,

(12.3)

where 𝑎 and 𝑐 are constants satisfying 0 < 𝑎 < 1 and 𝑐 > 0.

The nullclines of the system are

𝑤 = −𝑉(𝑉 − 𝑎)(𝑉 − 1) and 𝑤 =
𝑉

𝑐
.

The zero isoclines are shown in Figure 12.2, where the 𝑑𝑉/𝑑𝑡 = 0 isocline

is a cubic curve, and the 𝑑𝑤/𝑑𝑡 = 0 isocline is a straight line. The

behavior of the system depends on the parameter 𝑐: for small 𝑐, the

isoclines intersect only once at (0, 0), while for larger 𝑐, the isoclines

intersect three times, resulting in three equilibria.

To analyze stability, we linearize the system around each equilibrium.

The Jacobian matrix is:

𝐷f(𝑉, 𝑤) =
(
−3𝑉2 + 2𝑉 + +2𝑎𝑉 − 𝑎 −1

1 −𝑐

)
.
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Figure 12.3: Vector field for the Fitzhugh-

Nagumo model (Eq. (12.3)) with the null-

clines and some trajectories in green. Pa-

rameters: 𝑎 = 1/4, 𝑐 = 8.

At (0, 0):
𝐷f(0, 0) =

(
−𝑎 −1

1 −𝑐

)
,

with both eigenvalues with a negative real part. Therefore, (0, 0) is always

a stable equilibrium.

But what happens for large values of 𝑐? The three equilibria obey

−𝑉(𝑉 − 𝑎)(𝑉 − 1) = 𝑤, 𝑤 = 𝑉/𝑐 =⇒ −𝑉(𝑉 − 𝑎)(𝑉 − 1) = 𝑉

𝑐
,

so either 𝑉 = 0 or 𝑐(𝑉 − 𝑎)(𝑉 − 1) = −1. The last equation is solvable,

but let’s see one particular example.

Proposed Exercise 12.4.1 Find the three equilibria of the model when

𝑎 = 1/4 and 𝑐 = 8.

For 𝑎 = 1/4 and 𝑐 = 8, the equilibria are (0, 0),
(

1

2
, 1

16

)
,
(

3

4
, 3

32

)
.

Let’s look at the stability of the new equilibria: at

(
1

2
, 1

16

)
, the Jacobian

matrix is:

𝐷f
(
1

2

,
1

16

)
=

(
− 1

4
−1

1 −8

)
.

Here, det(𝐷f) < 0, so

(
1

2
, 1

16

)
is a saddle point.

At

(
3

4
, 3

32

)
, the Jacobian matrix is:

𝐷f
(
3

4

,
3

32

)
=

(
− 1

16
−1

1 −8

)
.

Here, det(𝐷f) > 0 and tr(𝐷f) < 0, so

(
3

4
, 3

32

)
is a stable node.

For small 𝑐, the neuron always returns to (0, 0), representing the resting

state. For larger 𝑐, the neuron exhibits bistability, with two stable equi-

libria at (0, 0) and

(
3

4
, 3

32

)
. The system’s behavior depends on the initial

conditions:

▶ If 𝑉(0) < 𝑉𝑐 , the neuron returns to (0, 0) (resting state).

▶ If 𝑉(0) > 𝑉𝑐 , the neuron fires and converges to

(
3

4
, 3

32

)
.

Figure 12.3 illustrates the solution curves and potential 𝑉(𝑡) for different

initial conditions. For weak stimuli (𝑉(0) < 𝑉𝑐), 𝑉(𝑡) decays to 0. For

stronger stimuli (𝑉(0) > 𝑉𝑐), 𝑉(𝑡) converges to the fired state.
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Exercises

Exercise 12.1 Find all fixed points of each system of differential equations

and determine their stability.

1.

{
𝑑𝑥
𝑑𝑡 = −𝑥 + 2𝑥(1 − 𝑥),
𝑑𝑦

𝑑𝑡 = −𝑦 + 5𝑦(1 − 𝑥 − 𝑦).

2.

{
𝑑𝑥
𝑑𝑡 = 2𝑥 − 𝑥2 − 2𝑦𝑥,
𝑑𝑦

𝑑𝑡 = 𝑦 − 2𝑦2 − 𝑥𝑦.

3.

{
𝑑𝑥
𝑑𝑡 = 4𝑥(1 − 𝑥) − 2𝑥𝑦,
𝑑𝑦

𝑑𝑡 = 𝑦(2 − 𝑦) − 𝑦.

4.

{
𝑑𝑥
𝑑𝑡 = 𝑥𝑦 − 2𝑦,
𝑑𝑦

𝑑𝑡 = 𝑥 + 𝑦.

Exercise 12.2 Assume that 𝑎 > 0. Find all point equilibria of the following

system of differential equations and characterize their stability:{
𝑑𝑥
𝑑𝑡 = 𝑦(𝑥 − 𝑎),
𝑑𝑦

𝑑𝑡 = 𝑦2 − 𝑥.

Exercise 12.3 Consider the following system of differential equations:{
𝑑𝑥
𝑑𝑡 = 𝑥(10 − 2𝑥 − 𝑦),
𝑑𝑦

𝑑𝑡 = 𝑦(10 − 𝑥 − 2𝑦).

(a) Graph the zero isoclines.

(b) Find all equilibria and classify them by linearizing the system near

each equilibrium.

(c) Draw the directions of the vector field on the zero isoclines and in

the regions between the zero isoclines.

Exercise 12.4 The Lotka-Volterra model of interspecific competition for

two species is given by the following equations:


𝑑𝑁1

𝑑𝑡 = 𝑟1𝑁1

(
1 − 𝑁1

𝐾1

− 𝛼12𝑁2

𝐾1

)
,

𝑑𝑁2

𝑑𝑡 = 𝑟2𝑁2

(
1 − 𝑁2

𝐾2

− 𝛼21𝑁1

𝐾2

)
.

The coefficients 𝑟1 , 𝑟2 , 𝐾1 , 𝐾2 , 𝛼12 , 𝛼21 are all positive. Take 𝑟1 = 1, 𝑟2 =

1, 𝐾1 = 1, 𝐾2 = 1.

1. Find the fixed points and study their stability if 𝑎12 = 0.4, 𝑎21 = 2.

2. Find the fixed points and study their stability if 𝑎12 = 2, 𝑎21 = 0.4.

3. Find the fixed points and study their stability if 𝑎12 = 0.4, 𝑎21 = 0.4.

4. Find the fixed points and study their stability if 𝑎12 = 2, 𝑎21 = 2.

Exercise 12.5 The Lotka-Volterra model for predator-prey interactions is{
𝑑𝑁
𝑑𝑡 = 𝑟𝑁 − 𝑎𝑃𝑁,
𝑑𝑃
𝑑𝑡 = 𝑏𝑃𝑁 − 𝑑𝑃,
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where 𝑟 is the per capita growth rate of 𝑁 , the prey, 𝑑 is the death rate of

the predator 𝑃, and 𝑎, 𝑏 measure how interactions affect the densities of

𝑁 and 𝑃 respectively.

If 𝑟 = 5, 𝑎 = 𝑏 = 𝑑 = 1,

(a) Show that this system has two equilibria: the trivial equilibrium

(0, 0), and a nontrivial one in which both species have positive

densities.

(b) Use the eigenvalue approach to show that the trivial equilibrium is

unstable.

(c) Determine the eigenvalues corresponding to the nontrivial equi-

librium. Does your analysis allow you to infer anything about the

stability of this equilibrium?

Exercise 12.6 Assume the following example of the FitzHugh–Nagumo

model: {
𝑑𝑉
𝑑𝑡 = −𝑉(𝑉 − 3/5)(𝑉 − 1) − 𝑤,
𝑑𝑤
𝑑𝑡 = 𝑉 − 𝑐𝑤.

Find the smallest value of 𝑐 for which the model predicts the existence of

multiple equilibria.
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Solutions to Exercises A
A.1 Functions

Exercise 1.1

(i) We can factor out the denominator as 𝑥2 − 5𝑥 + 6 = (𝑥 − 2)(𝑥 − 3);
therefore, the domain is ℝ − {2, 3}.

(ii) There are two conditions for 𝑓 (𝑥) to exist: 1− 𝑥2 ≥ 0 and 𝑥2 − 1 ≥ 0.

Together they imply 1 − 𝑥2 = 0. Therefore the domain is just the

set {−1, 1}.

(iii) There are two conditions to be met for 𝑥 to be in the domain:

first, 1 − 𝑥2 ≥ 0; second, 𝑥 ≠
√

1 − 𝑥2
. The first condition implies

𝑥2 ≤ 1, or equivalently, −1 ≤ 𝑥 ≤ 1. The second condition is

not fulfilled if 𝑥 =
√

1 − 𝑥2
. Squaring this equation we obtain

𝑥2 = 1 − 𝑥2
, which is equivalent to 𝑥2 = 1/2. The two solutions of

this equation are 𝑥 = ±1/
√

2, but of them two, only the positive

one is a solution of the original equation 𝑥 =
√

1 − 𝑥2
. Thus the

domain is [−1, 1/
√

2) ∪ (1/
√

2, 1].
(iv) The two coditions to be met for 𝑥 to be in the domain are 4− 𝑥2 ≥ 0

and 1 −
√

4 − 𝑥2 ≥ 0. The first one reads 𝑥2 ≤ 4, i.e., −2 ≤ 𝑥 ≤ 2.

The second one implies

√
4 − 𝑥2 ≤ 1. Both sides of this inequality

are positive, so we can square it to obtain 4 − 𝑥2 ≤ 1, i.e., 𝑥2 ≥ 3.

This holds either if 𝑥 ≥
√

3 or 𝑥 ≤ −
√

3. Therefore, the domain is

[−2,−
√

3] ∪ [
√

3, 2].
(v) The denominator vanishes if log 𝑥 = 1, i.e., if 𝑥 = 𝑒. Since the

logarithm requires 𝑥 > 0, the domain is (0, 𝑒) ∪ (𝑒 ,∞).
(vi) The condition to be met now is 𝑥 − 𝑥2 > 0. We can factor 𝑥 − 𝑥2 =

𝑥(1 − 𝑥), so the roots of the parabola are 𝑥 = 0 and 𝑥 = 1. Since

the coefficient of 𝑥2
is negative, the parabola is positive provided

0 < 𝑥 < 1. The domain is then (0, 1).
(vii) Three conditions need to be met: first, 𝑥 > 0 because 𝑥 is the

argument of a logarithm; second, log 𝑥 ≠ 0 because it is the

denominator; and third, 5 − 𝑥 ≥ 0 because it is the argument of a

square root. The second condition implies 𝑥 ≠ 1, whereas the third

one implies 𝑥 ≤ 5. Thus the domain is (0, 1) ∪ (1, 5].

Exercise 1.2

(a) We know that 𝑓 (−𝑥) = − 𝑓 (𝑥) and 𝑔(−𝑥) = −𝑔(𝑥). Then

( 𝑓 + 𝑔)(−𝑥) = 𝑓 (−𝑥) + 𝑔(−𝑥) = − 𝑓 (𝑥) − 𝑔(−𝑥) = −( 𝑓 + 𝑔)(𝑥),

so 𝑓 + 𝑔 is odd. Now,

( 𝑓 𝑔)(−𝑥) = 𝑓 (−𝑥)𝑔(−𝑥) = [− 𝑓 (𝑥)][−𝑔(𝑥)] = 𝑓 (𝑥)𝑔(𝑥) = ( 𝑓 𝑔)(𝑥),
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so 𝑓 𝑔 is even. Finally,

( 𝑓 ◦ 𝑔)(−𝑥) = 𝑓
(
𝑔(−𝑥)

)
= 𝑓

(
− 𝑔(𝑥)

)
= − 𝑓

(
𝑔(𝑥)

)
= −( 𝑓 ◦ 𝑔)(𝑥).

Thus 𝑓 ◦ 𝑔 is odd.

(b) Now 𝑓 (−𝑥) = 𝑓 (𝑥) and 𝑔(−𝑥) = −𝑔(𝑥). Then

( 𝑓 + 𝑔)(−𝑥) = 𝑓 (−𝑥) + 𝑔(−𝑥) = 𝑓 (𝑥) − 𝑔(−𝑥),

so 𝑓 + 𝑔 is neither even nor odd. As for the product,

( 𝑓 𝑔)(−𝑥) = 𝑓 (−𝑥)𝑔(−𝑥) = 𝑓 (𝑥)[−𝑔(𝑥)] = − 𝑓 (𝑥)𝑔(𝑥) = −( 𝑓 𝑔)(𝑥),

so 𝑓 𝑔 is odd. Finally,

( 𝑓 ◦ 𝑔)(−𝑥) = 𝑓
(
𝑔(−𝑥)

)
= 𝑓

(
− 𝑔(𝑥)

)
= 𝑓

(
𝑔(𝑥)

)
= ( 𝑓 ◦ 𝑔)(𝑥).

Thus 𝑓 ◦ 𝑔 is even.

Exercise 1.3 (i)

𝑓 (−𝑥) = −𝑥
(−𝑥)2 + 1

= − 𝑓 (𝑥).

The function is odd.

(ii)

𝑓 (−𝑥) = (−𝑥)2 − (−𝑥)
(−𝑥)2 + 1

=
𝑥2 + 𝑥
𝑥2 + 1

≠ ± 𝑓 (𝑥),

so the function is neither.

(iii)

𝑓 (−𝑥) = sin(−𝑥)
−𝑥 =

− sin 𝑥

−𝑥 =
sin 𝑥

𝑥
= 𝑓 (𝑥).

The function is even.

(iv)

𝑓 (−𝑥) = cos

(
(−𝑥)3

)
sin

(
(−𝑥)2

)
𝑒−(−𝑥)

4

= cos(−𝑥3) sin(𝑥2)𝑒−𝑥4

= cos(𝑥3) sin(𝑥2)𝑒−𝑥4

= 𝑓 (𝑥).

The function is even.

(v)

𝑓 (−𝑥) = 1√
(−𝑥)2 + 1 − (−𝑥)

=
1√

𝑥2 + 1 + 𝑥
,

so the function is neither.

(vi) This function is the logarithm of the function in the previous item,

so it seems that it has no defined parity because

𝑓 (−𝑥) = log

(√
𝑥2 + 1 + 𝑥

)
.

However,

√
𝑥2 + 1+𝑥 =

(√
𝑥2 + 1 + 𝑥

) (√
𝑥2 + 1 − 𝑥

)
√
𝑥2 + 1 − 𝑥

=
𝑥2 + 1 − 𝑥2

√
𝑥2 + 1 − 𝑥

=
1√

𝑥2 + 1 − 𝑥
,
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so

𝑓 (−𝑥) = log

(√
𝑥2 + 1 + 𝑥

)
= log

(
1√

𝑥2 + 1 − 𝑥

)
= − log

(√
𝑥2 + 1 − 𝑥

)
= − 𝑓 (𝑥).

The function is odd.

Exercise 1.4

(a) An easy way to check for injectivity is to determine whether the

equation 𝑦 = 𝑓 (𝑥) has a unique solution for those 𝑦 for which it

can be solved.

(i) For every 𝑦 ∈ ℝ,

𝑦 = 7𝑥 − 4 ⇒ 𝑥 =
𝑦 + 4

7

.

So there is a unique solution no matter 𝑦, which means that

the function is injective.

(ii) Only if −1 ≤ 𝑦 ≤ 1 the equation

𝑦 = sin(7𝑥 − 4)

can have a solution. On the other hand, two points 𝑥1 and

𝑥2 such that 7𝑥2 − 4 = 7𝑥1 − 4 + 2𝑛𝜋, with 𝑛 ∈ ℤ, are both

solutions of the same 𝑦. Clearly 𝑥2 = 𝑥1 + 2𝑛𝜋/7. Therefore

there are infinitely many solutions for each −1 ≤ 𝑦 ≤ 1, which

means that the function is not injective.

(iii) For any 𝑦 ∈ ℝ,

𝑦 = (𝑥 + 1)3 + 2 ⇒ 𝑥 = (𝑦 − 2)1/3 − 1,

so the solution is unique and the function is injective.

(iv) Take 𝑦 so that

𝑦 =
𝑥 + 2

𝑥 + 1

.

Then

𝑦(𝑥 + 1) = 𝑥 + 2 ⇒ 𝑦 − 2 = 𝑥(1 − 𝑦).

Thus, provided 𝑦 ≠ 1, we obtain

𝑥 =
𝑦 − 2

1 − 𝑦

and the solution is unique. The function is injective.

(v) Take 𝑦 and solve for 𝑦 = 𝑥2 − 3𝑥 + 2, or 𝑥2 − 3𝑥 + 2 − 𝑦 = 0.

Then

𝑥 =
3 ±

√
9 + 4(𝑦 − 2)

2

=
3 ±

√
4𝑦 + 1

2

.

The equation has a solution only if 𝑦 ≥ −1/4. But for all

𝑦 > −1/4 there are two different solutions. Therefore the

function is not injective.
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(vi) Consider the equation

𝑦 =
𝑥

𝑥2 + 1

.

If 𝑦 = 0 the only solution is 𝑥 = 0. If 𝑦 ≠ 0 it can be transformed

into

𝑦(𝑥2 + 1) = 𝑥 ⇒ 𝑦𝑥2 − 𝑥 + 𝑦 = 0.

The solutions of this quadratic equation are

𝑥 =
1 ±

√
1 − 4𝑦2

2𝑦
.

There is solution only if 𝑦2 ≤ 1/4, i.e., −1/2 ≤ 𝑦 ≤ 1/2, but

for every −1/2 < 𝑦 < 1/2 there are two different solutions for

the same 𝑦, hence the function is not injective.

(vii) For every 𝑦 > 0,

𝑦 = 𝑒−𝑥 ⇒ log 𝑦 = −𝑥 ⇒ 𝑥 = − log 𝑦.

The solution is unique and the function is injective.

(viii) For every 𝑦 ∈ ℝ,

𝑦 = log(𝑥 + 1) ⇒ 𝑒𝑦 = 𝑥 + 1 ⇒ 𝑥 = 𝑒𝑦 − 1.

The solution is unique and the function is injective.

(b) The solutions of the equation 𝑦 = 𝑥2 − 3𝑥 + 2 are (see previous

item)

𝑥 =
3 ±

√
4𝑦 + 1

2

.

Clearly one solution is larger than 3/2 and the other is smaller than

3/2. Therefore, if we limit the domain to those 𝑥 larger than 3/2

only one solution survives and the function becomes injective.

(c)

(i) There is a unique solution for every 𝑦 ∈ ℝ, therefore the

function is surjective, hence bĳective.

(ii) Not surjective because the range is [−1, 1].
(iii) Surjective and bĳective.

(iv) Not surjective because 𝑦 = 1 is not in the range of the function.

(v) Not surjective because the range is [−1/4,∞).
(vi) Not surjective because the range is [−1/2, 1/2].

(vii) Not surjective because the range is (0,∞).
(viii) Surjective and bĳective.

Exercise 1.5 1. Since sin(2𝑥 − 𝜋) ∈ [−1, 1],

min 𝑓 (𝑥) = −3+1 = −2, max 𝑓 (𝑥) = 3+1 = 4, 𝐴 = max 𝑓 (𝑥)−min 𝑓 (𝑥) = 4−(−2) = 6.

2. The inner argument 2𝑥 − 𝜋 has period 2𝜋. Hence

2(𝑥 + 𝑐) − 𝜋 = 2𝑥 − 𝜋 + 2𝜋 =⇒ 𝑐 = 𝜋.
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3. Write

2𝑥 − 𝜋 = 2

(
𝑥 − 𝜋

2

)
,

so the graph is shifted to the right by
𝜋
2
.

4. Compared to 3 sin 2𝑥, the graph is moved up by 1.

Exercise 1.6 1.

sin

(
𝑥 + 𝜋

2

)
= sin 𝑥 cos

𝜋
2
+ cos 𝑥 sin

𝜋
2
= cos 𝑥.

2.

cos

(
𝑥 − 𝜋

2

)
= cos 𝑥 cos

𝜋
2
+ sin 𝑥 sin

𝜋
2
= sin 𝑥.

Hence sin 𝑥 and cos 𝑥 differ by a phase-shift of
𝜋
2
.

3. From the double-angle formula cos 2𝑥 = cos(𝑥+𝑥) = cos
2 𝑥−sin

2 𝑥,

we get

cos
2 𝑥 + sin

2 𝑥 = 1.

4. Again from cos 2𝑥 = 2 cos
2 𝑥 − 1, we solve for cos

2 𝑥:

cos
2 𝑥 =

1 + cos 2𝑥

2

.

5. Since sin
2 𝑥 = 1 − cos

2 𝑥, it follows that

sin
2 𝑥 = 1 − 1 + cos 2𝑥

2

=
1 − cos 2𝑥

2

.

Exercise 1.7
2 cos 𝑥 − 3 = 0 =⇒ cos 𝑥 = 3

2
.

Since
3

2
∉ [−1, 1], there are no real solutions in [0, 2𝜋).

Exercise 1.8 Use GeoGebra to help you with this exercise.

Exercise 1.9 Here are some hints to help you plot these functions:

(i) Start off with the plot of 𝑔(𝑥) = 𝑥2
; function 𝑓 (𝑥) = 𝑔(𝑥 + 2) − 1, so

shift the plot two units to the left and one unit down.

(ii) Start off with the plot of 𝑔(𝑥) =
√
𝑥 and then tranform it into that

of ℎ(𝑥) =
√
−𝑥 by reflecting it on the Y axis. Then 𝑓 (𝑥) = ℎ(𝑥 − 4),

so shift this plot four units to the right.

(iii) Start off from the plots of 𝑔1(𝑥) = 𝑥2
and 𝑔2(𝑥) = 1/𝑥. Near 𝑥 = 0

𝑔1 is negligible with respect to 𝑔2 —which diverges to ±∞ at 𝑥 = 0.

Far from 𝑥 = 0 it is 𝑔2 that is negligible with respect to 𝑔1, which

grows indefinitely. So 𝑓 (𝑥) is close to 𝑔2(𝑥) as 𝑥 ‘moves’ toward 0,

and close to 𝑔1(𝑥) as 𝑥 goes far awat from 𝑥 = 0. Sketch the plot of

𝑓 (𝑥) using this information.

(iv) Start off with the plot of 𝑔(𝑥) = 𝑥2
and shift it up one unit to get

that of ℎ(𝑥) = 𝑥2 + 1. Then 𝑓 (𝑥) = 1/ℎ(𝑥). Since ℎ(𝑥) > 1 for all

𝑥 ≠ 0 and ℎ(0) = 1, then 𝑓 (𝑥) < 1 for all 𝑥 ≠ 0 and 𝑓 (0) = 1.

Besides, ℎ(𝑥) grows indefinitely as 𝑥 goes away from the origin, so

𝑓 (𝑥) has to approach 0.

(v) 𝑔(𝑥) = 𝑥 − 𝑥2 = 𝑥(1 − 𝑥), so 𝑔(𝑥) > 0 if 0 < 𝑥 < 1 and 𝑔(𝑥) < 0 if
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𝑥 < 0 or 𝑥 > 1. Therefore

𝑓 (𝑥) =
{
𝑥2 , if 0 ≤ 𝑥 ≤ 1,

𝑥, otherwise.

(vi) 𝑒𝑥 is monotonically increasing and croses 1 at 𝑥 = 0. Therefore

𝑓 (𝑥) =
{
𝑒𝑥 − 1, if 𝑥 ≥ 0,

1 − 𝑒𝑥 , if 𝑥 < 0.

All that needs to be done is to reflect the graph of 𝑒𝑥 − 1 (equal to

that of 𝑒𝑥 but shifted down one unit) for 𝑥 < 0 on the X axis.

Let 𝑛 be an integer and let us try to figure out where⌊
1

𝑥

⌋
= 𝑛.

By definition

𝑛 ≤ 1

𝑥
< 𝑛 + 1. (A.1)

As we have mentioned above, 𝑓 (𝑥) will not be defined if 𝑛 = 0.

This means all 𝑥 such that

0 ≤ 1

𝑥
< 1.

The left inequality implies 𝑥 > 0. The right inequality implies 𝑥 > 1.

Therefore the domain of 𝑓 is (−∞, 0) ∪ (0, 1].
Consider first 𝑥 ∈ (0, 1]. Then, according to (A.1) 𝑛 > 0. From the

left inequality 𝑥 ≤ 1/𝑛, and from the right one 𝑥 > 1/(𝑛 + 1). Thus

𝑓 (𝑥) = 1

𝑛
for all 𝑥 ∈

(
1

𝑛 + 1

,
1

𝑛

]
, 𝑛 ∈ ℕ.

In other words, 𝑓 (𝑥) = 1 for 𝑥 ∈ (1/2, 1], 𝑓 (𝑥) = 1/2 for 𝑥 ∈
(1/3, 1/2], 𝑓 (𝑥) = 1/3 for 𝑥 ∈ (1/4, 1/3], etc. This covers the plot of

𝑓 (𝑥) within the interval (0, 1]. By the way, the function gets closer

and closer to 0 as 𝑥 approaches 0.

Consider now the interval (−∞, 0). Then 𝑛 in (A.1) must be negative.

Then the left inequality again implies 𝑥 ≤ 1/𝑛 and the right one

𝑥 > 1/(𝑛 + 1). The result is the same:

𝑓 (𝑥) = 1

𝑛
for all 𝑥 ∈

(
1

𝑛 + 1

,
1

𝑛

]
, 𝑛 ∈ −ℕ.

So we have 𝑓 (𝑥) = −1 if 𝑥 ∈ (−∞,−1], 𝑓 (𝑥) = −1/2 if 𝑥 ∈
(−1,−1/2], 𝑓 (𝑥) = −1/3 if 𝑥 ∈ (−1/2,−1/3], etc. This covers the

whole interval (−∞, 0).
(vii) Function 𝑔(𝑥) = 𝑥2 − 1 < 0 if −1 < 𝑥 < 1 and 𝑔(𝑥) > 0 otherwise,

so

𝑓 (𝑥) =
{

1 − 𝑥2 , if −1 < 𝑥 < 1,

𝑥2 − 1, otherwise.

All that one has to do is to reflect the portion of the graph of 𝑥2 − 1

in the interval (−1, 1) on the X axis.
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(viii) Plot 𝑔(𝑥) = 𝑒𝑥 . The plot of 𝑔(−𝑥) is just the mirror image with

respect to the Y axis. And that of −𝑔(−𝑥) is a new reflection with

respect to the X axis. Shift the whole plot one unit upward and you

will get the plot of 𝑓 (𝑥) = −𝑔(−𝑥) + 1 = 1 − 𝑒−𝑥 .
(ix) The function is defined only if |𝑥| ≥ 1. Besides, it is an even function,

so it will be symmetric with respect to the Y axis. Let us then focus on

the positive interval [1,∞). Notice that 𝑓 (𝑥) = log(𝑥−1)+log(𝑥+1).
These are two graphs of log 𝑥, the first one shifted one unit to the

right and the second one shifted one unit to the left. Since log 𝑥

grows very slowly but diverges at 𝑥 = 0, near the point 𝑥 = 1

function log(𝑥−1)will diverge and log(𝑥+1)will then be negligible.

In oher words, 𝑓 (𝑥) ≈ log(𝑥 − 1). On the other hand, when 𝑥 is

large 𝑥 ± 1 ≈ 𝑥, so 𝑓 (𝑥) ≈ 2 log 𝑥. Plot 𝑓 (𝑥) using this information.

(x) As 𝑥 grows far away from the origin (positive or negative) 1/𝑥
becomes very small, so sin(1/𝑥) approaches 1/𝑥, and therefore

𝑓 (𝑥) approaches 1. On the other hand, sin(1/𝑥) oscillates wildly as

𝑥 gets near the origin, but 𝑥 modulates the amplitude (making it

smaller the closer to the origin).

Exercise 1.10

(i) We use the identity 𝑥𝑛 − 𝑎𝑛 = (𝑥 − 𝑎)(𝑥𝑛−1 + 𝑥𝑛−2𝑎 + 𝑥𝑛−3𝑎2 + · · · +
𝑥𝑎𝑛−2 + 𝑎𝑛−1) and obtain

lim

𝑥→𝑎

𝑥𝑛 − 𝑎𝑛
𝑥 − 𝑎 = lim

𝑥→𝑎

����(𝑥 − 𝑎)(𝑥𝑛−1 + 𝑥𝑛−2𝑎 + 𝑥𝑛−3𝑎2 + · · · + 𝑥𝑎𝑛−2 + 𝑎𝑛−1)
���𝑥 − 𝑎 = 𝑛𝑎𝑛−1.

(ii) We use the identity 𝑥 − 𝑎 =
(√
𝑥 −

√
𝑎
) (√

𝑥 +
√
𝑎
)

and get

lim

𝑥→𝑎

√
𝑥 −

√
𝑎

𝑥 − 𝑎 = lim

𝑥→𝑎

����√
𝑥 −

√
𝑎

�����(√
𝑥 −

√
𝑎
) (√

𝑥 +
√
𝑎
) =

1

2

√
𝑎
.

(iii) We can rewrite

1−
√

1 − 𝑥2 =

(
1 −

√
1 − 𝑥2

) (
1 +

√
1 − 𝑥2

)
1 +

√
1 − 𝑥2

=
1 − (1 − 𝑥2)
1 +

√
1 − 𝑥2

=
𝑥2

1 +
√

1 − 𝑥2

.

Therefore

lim

𝑥→0

1 −
√

1 − 𝑥2

𝑥2

= lim

𝑥→0

��𝑥
2

��𝑥
2

(
1 +

√
1 − 𝑥2

) = lim

𝑥→0

1

1 +
√

1 − 𝑥2

=
1

2

.

(iv) We can rewrite

1√
𝑥 − 1

=

√
𝑥 + 1(√

𝑥 − 1

) (√
𝑥 + 1

) =

√
𝑥 + 1

𝑥 − 1

.

Therefore

lim

𝑥→1

(
1√
𝑥 − 1

− 2

𝑥 − 1

)
= lim

𝑥→1

(√
𝑥 + 1

𝑥 − 1

− 2

𝑥 − 1

)
= lim

𝑥→1

√
𝑥 + 1 − 2

𝑥 − 1

= lim

𝑥→1

√
𝑥 − 1

𝑥 − 1

= lim

𝑥→1

���𝑥 − 1(√
𝑥 + 1

)
����(𝑥 − 1)

= lim

𝑥→1

1√
𝑥 + 1

=
1

2

.

Exercise 1.11
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(i) On the one hand, as 𝑥 → ∞,

𝑥3 + 4𝑥 − 7 = 𝑥3

(
1 + 4

𝑥2

− 7

𝑥3

)
∼ 𝑥3.

On the other hand,

7𝑥2 −
√

2𝑥6 + 𝑥5 = 7𝑥2 − 𝑥3

√
2 + 1

𝑥
= 𝑥3

(
7

𝑥
−

√
2 + 1

𝑥

)
∼ −

√
2𝑥3.

Therefore

lim

𝑥→∞
𝑥3 + 4𝑥 − 7

7𝑥2 −
√

2𝑥6 + 𝑥5

= lim

𝑥→∞
��𝑥

3

−
√

2��𝑥
3

= − 1√
2

.

(ii) On the one hand, as 𝑥 → ∞,

𝑥 + sin 𝑥3 = 𝑥

(
1 + sin 𝑥3

𝑥

)
∼ 𝑥

because | sin 𝑥3| ≤ 1 for all 𝑥 ∈ ℝ. On the other hand,

5𝑥 + 6 ∼ 5𝑥.

Therefore

lim

𝑥→∞
𝑥 + sin 𝑥3

5𝑥 + 6

= lim

𝑥→∞
�𝑥

5�𝑥
=

1

5

.

(iii) As 𝑥 → ∞,√
𝑥 +

√
𝑥 +

√
𝑥 =

√
𝑥

√
1 + 1

𝑥

√
𝑥 +

√
𝑥 =

√
𝑥

√
1 +

√
1

𝑥
+ 1

𝑥3/2

∼
√
𝑥,

thus

lim

𝑥→∞

√
𝑥√

𝑥 +
√
𝑥 +

√
𝑥

= lim

𝑥→∞
�
�
√
𝑥

�
�
√
𝑥

= 1.

(iv) This is an indeterminacy ∞−∞, so we must transform

√
𝑥2 + 4𝑥−𝑥 =

(√
𝑥2 + 4𝑥 − 𝑥

) (√
𝑥2 + 4𝑥 + 𝑥

)
√
𝑥2 + 4𝑥 + 𝑥

=
𝑥2 + 4𝑥 − 𝑥2

√
𝑥2 + 4𝑥 + 𝑥

=
4𝑥√

𝑥2 + 4𝑥 + 𝑥
.

Now, as 𝑥 → ∞,

√
𝑥2 + 4𝑥 + 𝑥 = 𝑥

(√
1 + 4

𝑥
+ 1

)
∼ 2𝑥,

therefore

lim

𝑥→∞

(√
𝑥2 + 4𝑥 − 𝑥

)
= lim

𝑥→∞
4𝑥√

𝑥2 + 4𝑥 + 𝑥
= lim

𝑥→∞
4�𝑥

2�𝑥
= 2.

Exercise 1.12

(i) Numerator and denominator are continuous functions in ℝ, so this

function will be continuous except when the denominator vanishes.

It does when 𝑥2 − 8𝑥 + 12 = (𝑥 − 6)(𝑥 − 2) = 0, so 𝑓 is continuous
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in ℝ − {2, 6}.

(ii) The function is the sum of a plynomial (continuous in ℝ) and the

function 𝑒3/𝑥
. The exponential is continuous everywhere and the

function 3/𝑥 too, except for 𝑥 = 0. Besides,

lim

𝑥→0
+
𝑒3/𝑥 = ∞,

so 𝑓 is continous in ℝ − {0}.

(iii) Polynomials are continuous in ℝ and so the tangent except when

its argument is an odd multiple of 𝜋/2. This means the points

3𝑥 + 2 = 𝑛𝜋 + 𝜋
2

⇒ 𝑥 =
𝑛𝜋 − 2

3

+ 𝜋
6

, 𝑛 ∈ ℤ.

𝑓 is continuous except at these infinitely many points.

(iv) Each piece of this piecwise function separately is a continuous

function, so we just need to check what happens at the joints. Thus,

lim

𝑥→1
+
𝑓 (𝑥) = lim

𝑥→1
+
(𝑥 − 1)3 = 0, lim

𝑥→1
−
𝑓 (𝑥) = lim

𝑥→1
−
(|𝑥| − 𝑥) = 0,

so

lim

𝑥→1

𝑓 (𝑥) = 0 = 𝑓 (1).

And

lim

𝑥→−1
−
𝑓 (𝑥) = lim

𝑥→−1
+
(|𝑥|−𝑥) = 2, lim

𝑥→−1
+
𝑓 (𝑥) = lim

𝑥→−1
−

sin(𝜋𝑥) = 0,

so 𝑓 (𝑥) is continuous in ℝ − {−1}.

(v) Each of the three pieces of this piecewise function is continuous (a

polynomial or the absolute value of a polynomial), so we need to

check just the joints. Thus,

lim

𝑥→2
+
𝑓 (𝑥) = lim

𝑥→2
+
(4𝑥 − 5) = 3, lim

𝑥→2
−
𝑓 (𝑥) = lim

𝑥→2
−
|𝑥2 − 1| = 3,

so

lim

𝑥→2

𝑓 (𝑥) = 3 = 𝑓 (2).

And

lim

𝑥→−2
−
𝑓 (𝑥) = lim

𝑥→−2
+
|𝑥2 − 1| = 3, lim

𝑥→−2
+
𝑓 (𝑥) = lim

𝑥→−2
−
𝑥2 = 4,

so 𝑓 (𝑥) is continuous in ℝ − {−2}.

(vi) The functions defining 𝑓 (𝑥) for |𝑥| > 1 are both polynomials —

hence continuous. Within |𝑥| ≤ 1 it is defined as 𝑔(𝑥) = 𝑥 − ⌊𝑥⌋.
Now, 𝑔(𝑥) = 𝑥 + 1 for all −1 ≤ 𝑥 < 0, 𝑔(𝑥) = 𝑥 for all 0 ≤ 𝑥 < 1,

and 𝑔(1) = 0. Thus function 𝑓 (𝑥) can be redefined as

𝑓 (𝑥) =

(𝑥 − 1)2 , 𝑥 ≥ 1,

𝑥, 0 ≤ 𝑥 < 1,

𝑥 + 1, 𝑥 < 0.

All three pieces are continuous (polynomials), so we must look at
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the joints. So,

lim

𝑥→1
+
𝑓 (𝑥) = lim

𝑥→1
+
(𝑥 − 1)2 = 0, lim

𝑥→1
−
𝑓 (𝑥) = lim

𝑥→1
−
𝑥 = 1,

and

lim

𝑥→0
+
𝑓 (𝑥) = lim

𝑥→0
+
𝑥 = 0, lim

𝑥→0
−
𝑓 (𝑥) = lim

𝑥→0
−
(𝑥 + 1) = 1.

Therefore the 𝑓 (𝑥) is continuous in ℝ − {0, 1}.

Exercise 1.13

(i) Denoting 𝑓 (𝑥) = 𝑥2 − 18𝑥 + 2, a continuous function in ℝ, we have

𝑓 (−1) = 21, 𝑓 (1) = −15, so Bolzano’s theorem guarantees at least

one zero in [−1, 1].
(ii) Denoting 𝑓 (𝑥) = 𝑥 − sin 𝑥 − 1, a continuous function in ℝ, we have

𝑓 (0) = −1 and 𝑓 (𝜋) = 𝜋 − 1 > 0, so Bolzano’s theorem guarantees

at least one zero in [0,𝜋].
(iii) Since 𝑒𝑥 > 0, we know that 𝑒𝑥 + 1 > 0, so the equation cannot have

any solution in ℝ.

(iv) Since −1 ≤ cos 𝑥 ≤ 1 for all 𝑥 ∈ ℝ, the equation cos 𝑥 = −2 cannot

have any solution in ℝ.
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A.2 Derivatives

Exercise 2.1

(i)

ℎ′(𝑥) = 𝑓 (𝑥) 𝑓 ′(𝑥) + 𝑔(𝑥)𝑔′(𝑥)√
𝑓 (𝑥)2 + 𝑔(𝑥)2

.

(ii)

ℎ′(𝑥) = 1

1 +
(
𝑓 (𝑥)
𝑔(𝑥)

)
2

· 𝑓
′(𝑥)𝑔(𝑥) − 𝑓 (𝑥)𝑔′(𝑥)

𝑔(𝑥)2 =
𝑓 ′(𝑥)𝑔(𝑥) − 𝑓 (𝑥)𝑔′(𝑥)

𝑓 (𝑥)2 + 𝑔(𝑥)2 .

(iii)

ℎ′(𝑥) = 𝑓 ′
(
𝑔(𝑥)

)
𝑔′(𝑥)𝑒 𝑓 (𝑥)+ 𝑓

(
𝑔(𝑥)

)
𝑓 ′(𝑥)𝑒 𝑓 (𝑥) =

[
𝑓 ′

(
𝑔(𝑥)

)
𝑔′(𝑥) + 𝑓

(
𝑔(𝑥)

)
𝑓 ′(𝑥)

]
𝑒 𝑓 (𝑥).

(iv) First of all ℎ(𝑥) = log

(
𝑔(𝑥)

)
+ log

(
sin 𝑓 (𝑥)

)
, so

ℎ′(𝑥) = 𝑔′(𝑥)
𝑔(𝑥) + 𝑓 ′(𝑥) cos 𝑓 (𝑥)

sin 𝑓 (𝑥) =
𝑔′(𝑥)
𝑔(𝑥) + 𝑓 ′(𝑥) cot 𝑓 (𝑥).

(v) We first write 𝑓 (𝑥)𝑔(𝑥) = exp

{
𝑔(𝑥) log 𝑓 (𝑥)

}
. Then

ℎ′(𝑥) =
[
𝑔′(𝑥) log 𝑓 (𝑥) + 𝑔(𝑥) 𝑓 ′(𝑥)

𝑓 (𝑥)

]
exp

{
𝑔(𝑥) log 𝑓 (𝑥)

}
=

[
𝑔′(𝑥) log 𝑓 (𝑥) + 𝑔(𝑥) 𝑓 ′(𝑥)

𝑓 (𝑥)

]
𝑓 (𝑥)𝑔(𝑥)

= 𝑓 (𝑥)𝑔(𝑥)𝑔′(𝑥) log 𝑓 (𝑥) + 𝑔(𝑥) 𝑓 ′(𝑥) 𝑓 (𝑥)𝑔(𝑥)−1.

(vi)

ℎ′(𝑥) = − 1[
log

(
𝑓 (𝑥) + 𝑔(𝑥)2

) ]
2

· 𝑓
′(𝑥) + 2𝑔(𝑥)𝑔′(𝑥)
𝑓 (𝑥) + 𝑔(𝑥)2 .

Exercise 2.2

(i) 𝑓 ′(𝑥) = − 𝑐

𝑥2

, therefore

𝑥 𝑓 ′ + 𝑓 = − 𝑐
𝑥
+ 𝑐

𝑥
= 0.

(ii) 𝑓 ′(𝑥) = tan 𝑥 + 𝑥(1 + tan
2 𝑥), therefore

𝑥 𝑓 ′ − 𝑓 − 𝑓 2 = 𝑥 tan 𝑥 + 𝑥2 − 𝑥2

tan
2 𝑥 − 𝑥 tan 𝑥 − 𝑥2

tan
2 𝑥 = 𝑥2.

(iii) 𝑓 ′(𝑥) = 3𝑐1 cos 3𝑥−3𝑐2 sin 3𝑥 and 𝑓 ′′(𝑥) = −9𝑐1 sin 3𝑥−9𝑐2 cos 3𝑥,

therefore

𝑓 ′′ + 9 𝑓 = −9𝑐1 sin 3𝑥 − 9𝑐2 cos 3𝑥 + 9(𝑐1 sin 3𝑥 + 𝑐2 cos 3𝑥) = 0.

(iv) 𝑓 ′(𝑥) = 3𝑐1𝑒
3𝑥 − 3𝑐2𝑒

−3𝑥
and 𝑓 ′′(𝑥) = 9𝑐1𝑒

3𝑥 + 9𝑐2𝑒
−3𝑥

, therefore

𝑓 ′′ − 9 𝑓 = 9𝑐1𝑒
3𝑥 + 9𝑐2𝑒

−3𝑥 − 9(𝑐1𝑒
3𝑥 + 𝑐2𝑒

−3𝑥) = 0.
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(v) 𝑓 ′(𝑥) = 2𝑐1𝑒
2𝑥 + 5𝑐2𝑒

5𝑥
and 𝑓 ′′(𝑥) = 4𝑐1𝑒

2𝑥 + 25𝑐2𝑒
5𝑥

, therefore

𝑓 ′′ − 7 𝑓 ′ + 10 𝑓 = 4𝑐1𝑒
2𝑥 + 25𝑐2𝑒

5𝑥 − 7(2𝑐1𝑒
2𝑥 + 5𝑐2𝑒

5𝑥) + 10(𝑐1𝑒
2𝑥 + 𝑐2𝑒

5𝑥)
= (4 − 14 + 10)𝑒2𝑥 + (25 − 35 + 10)𝑒5𝑥 = 0.

(vi) 𝑓 ′(𝑥) = 𝑐1𝑒
𝑥 − 𝑒−𝑥

𝑐1𝑒𝑥 + 𝑒−𝑥
and

𝑓 ′′(𝑥) = (𝑐1𝑒
𝑥 + 𝑒−𝑥)2 − (𝑐1𝑒

𝑥 − 𝑒−𝑥)2
(𝑐1𝑒𝑥 + 𝑒−𝑥)2

= 1 −
(
𝑐1𝑒

𝑥 − 𝑒−𝑥
𝑐1𝑒𝑥 + 𝑒−𝑥

)
2

,

therefore

𝑓 ′′ − ( 𝑓 ′)2 = 1 −
(
𝑐1𝑒

𝑥 − 𝑒−𝑥
𝑐1𝑒𝑥 + 𝑒−𝑥

)
2

+
(
𝑐1𝑒

𝑥 − 𝑒−𝑥
𝑐1𝑒𝑥 + 𝑒−𝑥

)
2

= 0.

Exercise 2.3

(i) Differentiating 𝑓 (𝑥) = arctan 𝑥 + arctan

1

𝑥
,

1

1 + 𝑥2

+ 1

1 + 1

𝑥2

(
− 1

𝑥2

)
=

1

1 + 𝑥2

− 1

𝑥2 + 1

= 0.

Therefore 𝑓 (𝑥) = 𝑐, a constant. To find out which constant we

must evaluate 𝑓 (𝑥) at any point 𝑥 > 0, say 𝑥 = 1. Then 𝑓 (1) = 𝑐 =

arctan 1 + arctan 1 = 2𝜋/4 = 𝜋/2.

(ii) Differentiating 𝑓 (𝑥) = arctan

1 + 𝑥
1 − 𝑥 − arctan 𝑥,

𝑓 ′(𝑥) = 1

1 +
(
1 + 𝑥
1 − 𝑥

)
2

1 − 𝑥 + 1 + 𝑥
(1 − 𝑥)2 − 1

1 + 𝑥2

=
2

(1 − 𝑥)2 + (1 + 𝑥)2 − 1

1 + 𝑥2

=
2

1 − 2𝑥 + 𝑥2 + 1 + 2𝑥 + 𝑥2

− 1

1 + 𝑥2

=
2

2 + 2𝑥2

− 1

1 + 𝑥2

= 0.

Therefore 𝑓 (𝑥) = 𝑐, a constant. To find out which constant we

must evaluate 𝑓 (𝑥) at any point 𝑥 < 1, say 𝑥 = 0. Then 𝑓 (0) = 𝑐 =

arctan 1 + arctan 0 = 𝜋/4.

(iii) Differentiating 𝑓 (𝑥) = 2 arctan 𝑥 + arcsin

2𝑥

1 + 𝑥2

,

𝑓 ′(𝑥) = 2

1 + 𝑥2

+ 1√
1 −

(
2𝑥

1 + 𝑥2

)
2

2(1 + 𝑥2) − 2𝑥 · 2𝑥

(1 + 𝑥2)2

=
2

1 + 𝑥2

+ 1 + 𝑥2√
(1 + 𝑥2)2 − 4𝑥2

2(1 − 𝑥2)
(1 + 𝑥2)2 =

2

1 + 𝑥2

+ 2(1 − 𝑥2)
(1 + 𝑥2)

√
(1 − 𝑥2)2

=
(∗)

2

1 + 𝑥2

+ 2(1 − 𝑥2)
(1 + 𝑥2)(𝑥2 − 1) =

2

1 + 𝑥2

− 2

1 + 𝑥2

= 0,

where in (*) we have used the fact that 𝑥 ≥ 1 implies that√
(1 − 𝑥2)2 = 𝑥2 − 1 ≥ 0. Therefore 𝑓 (𝑥) = 𝑐, a constant. To find

out which constant we must evaluate 𝑓 (𝑥) at any point 𝑥 ≥ 1, say

𝑥 = 1. Then 𝑓 (1) = 𝑐 = 2 arctan 1 + arcsin 1 = 2𝜋/4 + 𝜋/2 = 𝜋.
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Exercise 2.4 If we calculate 𝑓 ′(𝑥) = 1+ 1

3
(sin 𝑥)−2/3

cos 𝑥 we observe that

this function diverges whenever sin 𝑥 = 0, i.e., for 𝑥 = 𝑛𝜋 with 𝑛 ∈ ℤ.

Those are the points where the tangent straight line is vertical.

Exercise 2.5 Let us calculate the derivative on the left, 𝑓 ′(0−) and on the

right, 𝑓 ′(0+). Since 𝑓 (0) = 0,

𝑓 ′(0−) = lim

𝑥→0
−

𝑓 (𝑥) − 𝑓 (0)
𝑥

= lim

𝑥→0
−

1

1 + 𝑒1/𝑥 = lim

𝑡→−∞
1

1 + 𝑒 𝑡 = 1,

𝑓 ′(0+) = lim

𝑥→0
+

𝑓 (𝑥) − 𝑓 (0)
𝑥

= lim

𝑥→0
+

1

1 + 𝑒1/𝑥 = lim

𝑡→∞
1

1 + 𝑒 𝑡 = 0.

So the slope of the tangent on the left is 1 —hence it forms an angle 𝜋/4

with the X axis— and that on the right is 0 —hence it is parallel to the X

axis. Thus the angle between both tangents is 𝜋/4.

Exercise 2.6 The domain of this function requires that 𝑥 + 2 ≥ 0 and

−1 ≤ 𝑥 + 2 ≤ 1 be satisfied simultaneously. This happens for 𝑥 such that

0 ≤ 𝑥 + 2 ≤ 1, in other words, for 𝑥 ∈ [−2,−1]. Within this domain the

function is continuous because so are 𝑥 + 2,

√
𝑥, and cos 𝑥 —hence its

inverse— in their respective domains.

About differentiability,

𝑓 ′(𝑥) = arccos(𝑥 + 2)
2

√
𝑥 + 2

−
√
𝑥 + 2√

1 − (𝑥 + 2)2
=

arccos(𝑥 + 2)
2

√
𝑥 + 2

−
√

𝑥 + 2

−3 − 4𝑥 − 𝑥2

,

which diverges when 𝑥 = −2 and is defined only if 𝑥2 + 4𝑥 + 3 =

(𝑥+1)(𝑥+3) < 0. This happens for 𝑥 ∈ (−3,−1), an interval that overlaps

with the domain excluding the point 𝑥 = −1. Thus the derivative exits

only for 𝑥 ∈ (−2,−1).

Exercise 2.7 Function 𝑓 (𝑥)will be differentiable if and only if 𝛼𝑥2−𝑥+3 ≥
0 for all 𝑥 ∈ ℝ or 𝛼𝑥2 − 𝑥 + 3 ≤ 0 for all 𝑥 ∈ ℝ. The reason is that in

either of these two cases the parabola does not cross the X axis or it just

touches the axis at one point (it is only if the parabola crosses the axis that

its absolute value generates points with no derivative). The condition

for this to happen is that the discriminant of the parabola be ≤ 0, i.e.,

1 − 12𝛼 ≤ 0. Thus 𝛼 ≥ 1/12.

Exercise 2.8 Function 𝑓 (𝑥) is even, so it is enough to make sure that it is

continuous and differentiable at 𝑥 = 𝑐. The function will be continuous

at 𝑥 = 𝑐 if

𝑎 + 𝑏𝑐2 =
1

𝑐
.

On the other hand, for 𝑥 ≥ 0 the function is

𝑓 (𝑥) =

𝑎 + 𝑏𝑥2 , 0 ≤ 𝑥 ≤ 𝑐,

1

𝑥
, 𝑥 > 𝑐,

so its derivative will be

𝑓 ′(𝑥) =


2𝑏𝑥, 0 ≤ 𝑥 < 𝑐,

− 1

𝑥2

, 𝑥 > 𝑐,
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and therefore 𝑓 (𝑥) will be differentiable at 𝑥 = 𝑐 if

2𝑏𝑐 = − 1

𝑐2

⇔ 𝑏 = − 1

2𝑐3

.

And from the previous equation we obtain

𝑎 =
1

𝑐
− 𝑏𝑐2 =

1

𝑐
+ 1

2𝑐
=

3

2𝑐
.

So for |𝑥| < 𝑐 the function is defined as

𝑓 (𝑥) = 1

2𝑐

(
3 − 𝑥2

𝑐2

)
.

Exercise 2.9 The two pieces defining this function are continuous and

differentiable within their respective sets, so the only critical point is

𝑥 = 1. Let us first check the continuity at this point. So

lim

𝑥→1
+
𝑓 (𝑥) = lim

𝑥→1
+

1

𝑥
= 1, lim

𝑥→1
−
𝑓 (𝑥) = lim

𝑥→1
−

3 − 𝑥2

2

= 1,

hence

lim

𝑥→1

𝑓 (𝑥) = 1 = 𝑓 (1),

which proves that the function is continuous also at this point. As for

differentiability,

𝑓 ′(1+) = lim

𝑥→1
+

𝑓 (𝑥) − 𝑓 (1)
𝑥 − 1

= lim

𝑥→1
+

1

𝑥 − 1

𝑥 − 1

= lim

𝑥→1
+

1 − 𝑥
𝑥(𝑥 − 1) = −1,

𝑓 ′(1−) = lim

𝑥→1
−

𝑓 (𝑥) − 𝑓 (1)
𝑥 − 1

= lim

𝑥→1
−

3−𝑥2

2
− 1

𝑥 − 1

= lim

𝑥→1
−

1 − 𝑥2

2(𝑥 − 1) = lim

𝑥→1
−

(1 − 𝑥)(1 + 𝑥)
2(𝑥 − 1)

= lim

𝑥→1
−

−(1 + 𝑥)
2

= −1,

so 𝑓 is differentiable at this point and 𝑓 ′(1) = −1. Summarising, 𝑓 is

continuous and differentiable in ℝ.
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A.3 Taylor Expansions

Exercise 3.1

(i) There are two ways to solve these exercises. The first one amounts to

applying Taylor’s formula for 𝑃𝑛,𝑎(𝑥). For the case of 𝑓 (𝑥) = 𝑒𝑥 sin 𝑥

we have

𝑓 (𝑥) = 𝑒𝑥 sin 𝑥, 𝑓 (0) = 0,

𝑓 ′(𝑥) = 𝑒𝑥(sin 𝑥 + cos 𝑥), 𝑓 ′(0) = 1,

𝑓 ′′(𝑥) = 2𝑒𝑥 cos 𝑥, 𝑓 ′′(0) = 2,

𝑓 ′′′(𝑥) = 2𝑒𝑥(cos 𝑥 − sin 𝑥), 𝑓 ′′′(0) = 2,

𝑓 (4)(𝑥) = −4𝑒𝑥 sin 𝑥, 𝑓 (4)(0) = 0,

𝑓 (5)(𝑥) = −4𝑒𝑥(sin 𝑥 + cos 𝑥), 𝑓 (5)(0) = −4,

thus

𝑃5,0(𝑥) = 𝑥 + 𝑥2 + 𝑥3

3

− 𝑥5

30

.

The alternative way —the one we will follow here— amounts to

relying upon known Taylor expansions and operate with them. For

instance in this case we know that when 𝑥 → 0

𝑒𝑥 = 1+𝑥+𝑥
2

2

+ 𝑥
3

6

+ 𝑥
4

24

+ 𝑥5

120

+𝑜(𝑥5), sin 𝑥 = 𝑥− 𝑥
3

6

+ 𝑥5

120

+𝑜(𝑥5),

therefore, multiplying the two expressions —and collecting any

power higher than 𝑥5
as 𝑜(𝑥5)— we obtain

𝑒𝑥 sin 𝑥 =

[
1 + 𝑥 + 𝑥2

2

+ 𝑥3

6

+ 𝑥4

24

+ 𝑥5

120

+ 𝑜(𝑥5)
] [
𝑥 − 𝑥3

6

+ 𝑥5

120

+ 𝑜(𝑥5)
]

=

[
𝑥 − 𝑥3

6

+ 𝑥5

120

+ 𝑜(𝑥5)
]
+

[
𝑥2 −

�
��𝑥
4

6

+ 𝑜(𝑥5)
]
+

[
𝑥3

2

− 𝑥5

12

+ 𝑜(𝑥5)
]

+
[
�
��𝑥
4

6

+ 𝑜(𝑥5)
]
+

[
𝑥5

24

+ 𝑜(𝑥5)
]

= 𝑥 + 𝑥2 +
(
1

2

− 1

6

)
𝑥3 +

(
1

120

+ 1

24

− 1

12

)
𝑥5 + 𝑜(𝑥5)

= 𝑥 + 𝑥2 + 𝑥3

3

− 𝑥5

30

+ 𝑜(𝑥5),

and we get to the same result.

(ii) Now

𝑒−𝑥
2

= 1−𝑥2+ 𝑥
4

2

+𝑜(𝑥5), cos 2𝑥 = 1−(2𝑥)2
2

+(2𝑥)4
24

+𝑜(𝑥5) = 1−2𝑥2+2

3

𝑥4+𝑜(𝑥5),

so multiplying and collecting equal powers,

𝑒−𝑥
2

cos 2𝑥 =

[
1 − 𝑥2 + 𝑥4

2

+ 𝑜(𝑥5)
] [

1 − 2𝑥2 + 2

3

𝑥4 + 𝑜(𝑥5)
]

=1 − (1 + 2)𝑥2 +
(
1

2

+ 2 + 2

3

)
𝑥4 + 𝑜(𝑥5)

=1 − 3𝑥2 + 19

6

𝑥4 + 𝑜(𝑥5).
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Thus

𝑃5,0(𝑥) = 1 − 3𝑥2 + 19

6

𝑥4.

(iii) Using the trigonometric identity

sin𝜃 cos 𝜙 =
1

2

[
sin(𝜃 + 𝜙) + sin(𝜃 − 𝜙)

]
we can write

sin 𝑥 cos 2𝑥 =
1

2

(sin 3𝑥 − sin 𝑥) .

Now, since for 𝑧 → 0

sin 𝑧 = 𝑧 − 𝑧3

6

+ 𝑧5

120

+ 𝑜(𝑧5),

then

sin 𝑥 cos 2𝑥 =
1

2

(
3𝑥 − 9

2

𝑥3 + 81

40

𝑥5 − 𝑥 + 𝑥3

6

− 𝑥5

120

)
+ 𝑜(𝑥5)

(iv) In this case

𝑒𝑥 = 1+𝑥+𝑥
2

2

+ 𝑥
3

6

+ 𝑥
4

24

+ 𝑥5

120

+𝑜(𝑥5), log(1−𝑥) = −𝑥− 𝑥
2

2

− 𝑥
3

3

−𝑥
4

4

−𝑥
5

5

+𝑜(𝑥5),

so

𝑒𝑥 log(1 − 𝑥) = − 𝑥
[
1 + 𝑥

2

+ 𝑥2

3

+ 𝑥3

4

+ 𝑥4

5

+ 𝑜(𝑥4)
] [

1 + 𝑥 + 𝑥2

2

+ 𝑥3

6

+ 𝑥4

24

+ 𝑜(𝑥4)
]

= − 𝑥
[
1 +

(
1 + 1

2

)
𝑥 +

(
1

2

+ 1

2

+ 1

3

)
𝑥2 +

(
1

6

+ 1

4

+ 1

3

+ 1

4

)
𝑥3

+
(

1

24

+ 1

12

+ 1

6

+ 1

4

+ 1

5

)
𝑥4 + 𝑜(𝑥4)

]
= − 𝑥 − 3

2

𝑥2 − 4

3

𝑥3 − 𝑥4 − 89

120

𝑥5 + 𝑜(𝑥5).

Therefore

𝑃5,0(𝑥) = −𝑥 − 3

2

𝑥2 − 4

3

𝑥3 − 𝑥4 − 89

120

𝑥5.

(v) Since sin
2 𝑥 = (1 − cos 2𝑥)/2,

sin
2 𝑥 =

1

2

[
�1 − �1 + (2𝑥)2

2

− (2𝑥)4
24

+ 𝑜(𝑥5)
]
= 𝑥2 − 𝑥4

3

+ 𝑜(𝑥5),

hence

𝑃5,0(𝑥) = 𝑥2 − 𝑥4

3

.

(vi) We know that

1

1 − 𝑧 =

∞∑
𝑛=0

𝑧𝑛 = 1 + 𝑧 + 𝑧2 + · · · ,

therefore

1

1 − 𝑥3

= 1 + 𝑥3 + 𝑜(𝑥5),
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which implies 𝑃5,0(𝑥) = 1 + 𝑥3
.

Exercise 3.2 The Taylor polynomial 𝑃4,4(𝑥) of 𝑃(𝑥) = 𝑥4−5𝑥3+𝑥2−3𝑥+4

is obtained through

𝑃(𝑥) = 𝑥4 − 5𝑥3 + 𝑥2 − 3𝑥 + 4, 𝑃(4) = −56,

𝑃′(𝑥) = 4𝑥3 − 15𝑥2 + 2𝑥 − 3, 𝑃′(4) = 21,

𝑃′′(𝑥) = 12𝑥2 − 30𝑥 + 2, 𝑃′′(4) = 74,

𝑃′′′(𝑥) = 24𝑥 − 30, 𝑃′′′(4) = 66,

𝑃(4)(𝑥) = 24, 𝑃(4)(4) = 24.

Hence

𝑃(𝑥) = −56 + 21(𝑥 − 4) + 37(𝑥 − 4)2 + 11(𝑥 − 4)3 + (𝑥 − 4)4.

Exercise 3.3

(i) The polynomial must be expressed in powers of 𝑡 = 𝑥 + 1, so if we

write

1

𝑥
=

1

𝑡 − 1

= − 1

1 − 𝑡 = −1 − 𝑡 − 𝑡2 − · · · − 𝑡𝑛 + · · ·

we immediately obtain𝑃𝑛,−1(𝑥) = −1−(𝑥+1)−(𝑥+1)2−· · ·−(𝑥+1)𝑛 .

(ii) Since

𝑒−2𝑥 = 1 + (−2𝑥) + (−2𝑥)2
2

+ · · · + (−2𝑥)𝑛−1

(𝑛 − 1)! + 𝑜(𝑥𝑛−1)

= 1 − 2𝑥 + 2𝑥2 + · · · + (−1)𝑛−1
2
𝑛−1

(𝑛 − 1)! 𝑥
𝑛−1 + 𝑜(𝑥𝑛−1)

then

𝑥𝑒−2𝑥 = 𝑥 − 2𝑥2 + 2𝑥3 + · · · + (−1)𝑛−1
2
𝑛−1

(𝑛 − 1)! 𝑥
𝑛 + 𝑜(𝑥𝑛).

Thus

𝑃𝑛,0(𝑥) = 𝑥 − 2𝑥2 + 2𝑥3 + · · · + (−1)𝑛−1
2
𝑛−1

(𝑛 − 1)!𝑥
𝑛 .

(iii) We can expand (1 + 𝑒𝑥)2 = 1 + 2𝑒𝑥 + 𝑒2𝑥
, so

(1 + 𝑒𝑥)2 =1 + 2

[
1 + 𝑥 + 𝑥2

2

+ · · · + 𝑥𝑛

𝑛!

+ 𝑜(𝑥𝑛)
]
+

[
1 + 2𝑥 + (2𝑥)2

2

+ · · · + (2𝑥)𝑛
𝑛!

+ 𝑜(𝑥𝑛)
]

=4 + 4𝑥 + 3𝑥2 + · · · + 2 + 2
𝑛

𝑛!

𝑥𝑛 + 𝑜(𝑥𝑛),

from which

𝑃𝑛,0(𝑥) = 4 + 4𝑥 + 3𝑥2 + · · · + 2 + 2
𝑛

𝑛!

𝑥𝑛 .

(iv) We must express the polynomial in powers of 𝑡 = 𝑥 − 𝜋, therefore
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sin 𝑥 = sin(𝜋 + 𝑡) = − sin 𝑡, and

sin 𝑥 = −𝑡 + 𝑡3

6

− 𝑡5

120

+ · · · + (−1)𝑛 𝑡2𝑛−1

(2𝑛 − 1)! + 𝑜(𝑡
2𝑛−1).

Thus

𝑃2𝑛,𝜋(𝑥) = 𝑃2𝑛−1,𝜋(𝑥) = −(𝑥−𝜋)+(𝑥 − 𝜋)3
6

−(𝑥 − 𝜋)5
120

+· · ·+(−1)𝑛 (𝑥 − 𝜋)2𝑛−1

(2𝑛 − 1)! .

Exercise 3.4 Since sin 𝑥 = 𝑥 + 𝑜(𝑥), then 𝑓 (𝑥) = 1 + 𝑥4 + 𝑜(𝑥4), when

𝑥 → 0. Thus 𝑃4,0(𝑥) = 1 + 𝑥4
. Accordingly 𝑓 has a local minimum at

𝑥 = 0.

Exercise 3.5

(i) Let us consider the function

𝑓 (𝑥) = 1√
1 + 𝑥

.

The value we want to obtain is 𝑓 (0.1). The Taylor expansion for

this function near 𝑎 = 0 follows from

𝑓 (𝑥) = (1 + 𝑥)−1/2 , 𝑓 (0) = 1,

𝑓 ′(𝑥) = −1

2

(1 + 𝑥)−3/2 , 𝑓 ′(0) = −1

2

,

𝑓 ′′(𝑥) = 3

4

(1 + 𝑥)−5/2 , 𝑓 ′′(0) = 3

4

,

𝑓 ′′′(𝑥) = −15

8

(1 + 𝑥)−7/2 , 𝑓 ′′′(0) = −15

8

,

𝑓 (4)(𝑥) = 105

16

(1 + 𝑥)−9/2 ,

which implies

𝑃3,0(𝑥) = 1− 𝑥
2

+3

8

𝑥2− 5

16

𝑥3 , 𝑅3,0(𝑥) =
35

128

(
1√

1 + 𝜃𝑥

)
9

𝑥4 , 0 < 𝜃 < 1.

Now 𝑃3,0(0.1) = 0.9534375 and since

√
1 + 𝜃𝑥 > 1 for every 𝑥 > 0,

|𝑅3,0(𝑥)| <
35

128

𝑥4 ⇒ |𝑅3,0(0.1)| < 2.7 × 10
−5.

Hence 1/
√

1.1 = 0.9534(3) —where the figure in brackets may be

affected by the error. (The exact value is 1/
√

1.1 = 0.953462589 . . . )

(ii) Consider the function 𝑓 (𝑥) =
3

√
27 + 𝑥 =. Then

3

√
28 = 𝑓 (1). To

ontain the second degree Taylor expansion around 𝑎 = 0 we

calculate

𝑓 (𝑥) = (27 + 𝑥)1/3 , 𝑓 (0) = 3,

𝑓 ′(𝑥) = 1

3

(27 + 𝑥)−2/3 , 𝑓 ′(0) = 1

27

,

𝑓 ′′(𝑥) = −2

9

(27 + 𝑥)−5/3 , 𝑓 ′′(0) = − 2

2187

,

𝑓 ′′′(𝑥) = 10

27

(27 + 𝑥)−8/3 ,
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from which

𝑃2,0(𝑥) = 3+ 𝑥

27

− 𝑥2

2187

, 𝑅2,0(𝑥) =
5

81

𝑥3(
3

√
27 + 𝜃𝑥

)
8

, 0 < 𝜃 < 1.

Now 𝑃2,0(1) = 3.03657979 and since
3

√
27 + 𝜃𝑥 > 3

√
27 = 3 for every

𝑥 > 0,

|𝑅2,0(𝑥)| <
5𝑥3

531441

⇒ |𝑅2,0(1)| <
5

531441

= 0.9408×10
−5.

Hence
3

√
28 = 3.0365(8). (As a matter of fact

3

√
28 = 3.036588972 . . . )

(iii) Taking now 𝑓 (𝑥) = log(1 + 𝑥) the fourth-degree Taylor polynomial

is

𝑃4,0 = 𝑥 − 𝑥2

2

+ 𝑥3

3

− 𝑥4

4

For 𝑥 = 1/2 we have

𝑃4,0(1/2) = 1

2

− 1

8

+ 1

24

− 1

64

= 0.4010416666666 . . .

Now the fifth derivative is 𝑓 (𝑣)(𝑥) = 24(1 + 𝑥)−5
which has a

maximum value of 24 in (0, 1/2) at 𝑥 = 0. Hence,

|𝑅4,0(𝑥)| <
24

5!

𝑥5 =
1

5

𝑥5 ,

and

|𝑅4,0(1/2)| < 1

5

1

32

= 0.00625.

Therefore we can write log(3/2) = 0.40(1). And in fact the true

value is 0.4054651081081644 . . . .

Exercise 3.6

(i) Since for 𝑥 → 0

cos 𝑥 = 1 − 𝑥2

2

+ 𝑜(𝑥3), 𝑒𝑥 = 1 + 𝑥 + 𝑥2

2

+ 𝑥3

6

+ 𝑜(𝑥3),

then

𝑃3,0(𝑥) = 2 + 𝑥 + 𝑥3

6

.

(ii) First of all (cos 𝑥)(4) = cos 𝑥 and (𝑒𝑥)(4) = 𝑒𝑥 , so 𝑓 (4)(𝑥) = 𝑓 (𝑥).
Therefore

𝑅3,0(𝑥) =
cos𝜃𝑥 + 𝑒𝜃𝑥

24

𝑥4 , 0 < 𝜃 < 1.

Now | cos𝜃𝑥| ≤ 1 and 𝑒𝜃𝑥 ≤ max{𝑒𝑥 , 1}. Thus for −1/4 ≤ 𝑥 ≤ 1/4

|𝑅3,0(𝑥)| <
1 + 𝑒1/4

24

(
1

4

)
4

= 3.72 × 10
−4.

Exercise 3.7 The reminder of the Taylor expansion of 𝑓 (𝑥) = 𝑒𝑥 around

𝑎 = 0 is

𝑅𝑛,0(𝑥) =
𝑒𝜃𝑥

(𝑛 + 1)! 𝑥
𝑛+1 , 0 < 𝜃 < 1,
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so an upper bound for −1 ≤ 𝑥 ≤ 1 will be

|𝑅𝑛,0(𝑥)| <
𝑒

(𝑛 + 1)! .

If we want to have three exact decimal places the error should be smaller

than 10
−3

, so we must look for the smallest 𝑛 for which (𝑛 + 1)! > 10
3
.

Since 6! = 720 and 7! = 5040 then 𝑛 = 6.

Exercise 3.8

(i) To begin with

𝑓 (𝑥) = sin
2 𝑥 =

1

2

(1 − cos 2𝑥),

and since

cos 𝑡 =
∞∑
𝑛=0

(−1)𝑛 𝑡2𝑛

(2𝑛)! , 𝑡 ∈ ℝ,

substituting we obtain

𝑓 (𝑥) = 1

2

[
1 −

∞∑
𝑛=0

(−1)𝑛 (2𝑥)
2𝑛

(2𝑛)!

]
=

1

2

[
−

∞∑
𝑛=1

(−1)𝑛 (2𝑥)
2𝑛

(2𝑛)!

]
=

1

2

∞∑
𝑛=1

(−1)𝑛+1

2
2𝑛 𝑥2𝑛

(2𝑛)!

=

∞∑
𝑛=1

(−1)𝑛+1

2
2𝑛−1

𝑥2𝑛

(2𝑛)! , 𝑥 ∈ ℝ.

(ii) We can rewrite

𝑓 (𝑥) = log

√
1 + 𝑥
1 − 𝑥 =

1

2

log(1 + 𝑥) − 1

2

log(1 − 𝑥)

and use

log(1 + 𝑡) =
∞∑
𝑛=1

(−1)𝑛+1
𝑡𝑛

𝑛
, |𝑡| < 1,

to obtain

𝑓 (𝑥) = 1

2

∞∑
𝑛=1

(−1)𝑛+1
𝑥𝑛

𝑛
+ 1

2

∞∑
𝑛=1

𝑥𝑛

𝑛
=

∞∑
𝑛=1

[
(−1)𝑛+1 + 1

2

]
𝑥𝑛

𝑛
, |𝑥| < 1.

But

(−1)𝑛+1 + 1

2

=

{
1 if 𝑛 is odd,

0 if 𝑛 is even,

Therefore

𝑓 (𝑥) =
∞∑
𝑛=0

𝑥2𝑛+1

2𝑛 + 1

, |𝑥| < 1.

(iii) We can rewrite

𝑓 (𝑥) = 𝑥

𝑎
· 1

1 + 𝑏𝑥/𝑎 .

Now since

1

1 − 𝑡 =
∞∑
𝑛=0

𝑡𝑛 , |𝑡| < 1,
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then

𝑓 (𝑥) = 𝑥

𝑎

∞∑
𝑛=0

(−1)𝑛 𝑏
𝑛

𝑎𝑛
𝑥𝑛 =

∞∑
𝑛=0

(−1)𝑛 𝑏𝑛

𝑎𝑛+1

𝑥𝑛+1 =

∞∑
𝑛=1

(−1)𝑛−1
𝑏𝑛−1

𝑎𝑛
𝑥𝑛 , |𝑥| <

��� 𝑎
𝑏

��� .
(iv) We can express

𝑓 (𝑥) = 1

2

1

1 − 𝑥2/2

=
1

2

∞∑
𝑛=0

(
𝑥2

2

)𝑛
=

∞∑
𝑛=0

𝑥2𝑛

2
𝑛+1

,

and the converge requires 𝑥2/2 < 1, i.e., |𝑥| <
√

2.
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A.4 Local Behavior of Functions

Exercise 4.1

(a) 𝑓 is continuous in ℝ because so are polynomials and the absolute

value function. As for differentiability, we can express 𝑓 in a

piecewise description as

𝑓 (𝑥) =
{

4𝑥3 − 𝑥4 − 1, 0 < 𝑥 < 4,

𝑥4 − 4𝑥3 − 1, otherwise,

separating out the cases where 𝑥3(𝑥 − 4) < 0 from those where

𝑥3(𝑥 − 4) ≥ 0. Both pieces are differentiable (they are polynomials),

so we must check the joints. Since

𝑓 ′(𝑥) =
{

12𝑥2 − 4𝑥3 , 0 < 𝑥 < 4,

4𝑥3 − 12𝑥2 , 𝑥 < 0 or 𝑥 > 4,

we have 𝑓 ′(0−) = 𝑓 ′(0+) = 0, so 𝑓 is differentiable at 𝑥 = 0, but

𝑓 ′(4−) = −64, and 𝑓 ′(4+) = 64, so 𝑓 is not differentiable at 𝑥 = 4.

Summarising, 𝑓 is continuous in ℝ and differentiable in ℝ − {4}.

(b) First of all we need to look where 𝑓 ′(𝑥) = 0. This means

4𝑥2(3 − 𝑥) = 0 ⇒ 𝑥 = 0, 𝑥 = 3.

If 𝑥 < 0 but close to 𝑥 = 0 then 𝑓 ′(𝑥) = 4𝑥2(𝑥 − 3) < 0; if 𝑥 > 0

but close to 𝑥 = 0 then 𝑓 ′(𝑥) = 4𝑥2(3 − 𝑥) > 0. Therefore 𝑓 has

a local minimum at 𝑥 = 0. On the other hand, if 𝑥 < 3 then

𝑓 ′(𝑥) = 4𝑥2(3 − 𝑥) > 0 and if 𝑥 > 3 then 𝑓 ′(𝑥) = 4𝑥2(3 − 𝑥) < 0, so

𝑓 has a local maximum at 𝑥 = 3.

But this is not the whole story because 𝑓 is not differentiable at

𝑥 = 4 —hence 𝑥 = 4 cannot be a solution to 𝑓 ′(𝑥) = 0. We need

to check this point separately. Now, 𝑓 (4) = −1, but for any 𝑥 ≠ 4

near 𝑥 = 4 we have 𝑓 (𝑥) = |𝑥3(𝑥 − 4)| − 1 > −1, so 𝑥 = 4 is a local

minimum.

Finally, −1 is the smallest value that 𝑓 (𝑥) can take, and 𝑓 (0) =

𝑓 (4) = −1, so both, at 𝑥 = 0 and at 𝑥 = 4, function 𝑓 (𝑥) reaches

its absolute minimum. There is no absolute maximum though,

because the function grows indefinitely as 𝑥 → ±∞.

(c) 𝑓 (0) = −1 and 𝑓 (1) = 2, so Bolzano’s theorem guarantees that

there is at least one solution to 𝑓 (𝑥) = 0 in (0, 1). On the other

hand, in (0, 1) we have 𝑓 ′(𝑥) = 4𝑥2(3 − 𝑥) > 0 so the function is

monotonically increasing. Therefore the solution is unique.

Exercise 4.2

(a) The amount of material is proportional to the surface of the can,

which is given by the formula 𝑆 = 2𝜋𝑟2 + 2𝜋𝑟ℎ. But cans have all

the same volume 𝑉 = 𝜋𝑟2ℎ, so ℎ = 𝑉/𝜋𝑟2
and thefore

𝑆 = 2𝜋

(
𝑟2 + 𝑉

𝜋𝑟

)
.
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Minimising the surface amounts to minimising the function

𝑓 (𝑟) = 𝑟2 + 𝑉

𝜋𝑟
.

This is a differentiable function for all 𝑟 > 0, so the minimum is

reached at a solution of

𝑓 ′(𝑟) = 2𝑟 − 𝑉

𝜋𝑟2

= 0 ⇒ 𝑟3 =
𝑉

2𝜋
⇒ 𝑟 =

(
𝑉

2𝜋

)
1/3

and

ℎ =
𝑉

𝜋𝑟2

=

(
4𝑉

𝜋

)
1/3

.

(b) Lead is proportional to the surface. If the side of the square base

is 𝑎 and the height ℎ, then the surface will be 𝑆 = 𝑎2 + 4𝑎ℎ. The

volume constraint, 32 = 𝑎2ℎ, implies ℎ = 32/𝑎2
, so

𝑆 = 𝑎2 + 128

𝑎
= 𝑓 (𝑎).

Now,

𝑓 ′(𝑎) = 2𝑎 − 128

𝑎2

⇒ 𝑎3 = 64 ⇒ 𝑎 = 4, ℎ = 2.

(c) We can eliminate 𝑦 = 20 − 𝑥, so the function to maximise is

𝑓 (𝑥) = 𝑥2(20 − 𝑥)3.

Now,

𝑓 ′(𝑥) = 2𝑥(20−𝑥)3−3𝑥2(20−𝑥)2 = 𝑥(20−𝑥)2(40−2𝑥−3𝑥) = 5𝑥(20−𝑥)2(8−𝑥) = 0.

The two solutions 𝑥 = 0, 𝑥 = 20 clearly minimise the function. The

maximum is then 𝑥 = 8 and 𝑦 = 12.

(d) If 𝑥 is half the horizontal side of the rectangle, then

𝑦 = 𝑏

√
1 − 𝑥2

𝑎2

is half the vertical side. Then the area of the rectangle is

𝐴 = 4𝑥𝑦 = 4𝑏𝑥

√
1 − 𝑥2

𝑎2

.

Maximising this area is tantamount to maximising

𝑓 (𝑥) = 𝐴2

16𝑏2

= 𝑥2 − 𝑥4

𝑎2

,

which means solving the equation

𝑓 ′(𝑥) = 2𝑥 − 4𝑥3

𝑎2

= 2𝑥

(
1 − 2𝑥2

𝑎2

)
= 0.

One solution is 𝑥 = 0 —which is obviously not the right one—

and the other two solutions are 𝑥 = ±𝑎/
√

2. Clearly the one that
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maximises the area has to be 𝑥 = 𝑎/
√

2.

(e) The picture illustrates how to construct the described triangle:

We can select an arbitrary point on the parabola, (𝑥0 , 6 − 𝑥2

0
). The

slope of the tangent at that point will be 𝑚 = −2𝑥0 (obtained

differentiating 6 − 𝑥2
), so the equation of the tangent straight line

will be

𝑦 = 6 − 𝑥2

0
− 2𝑥0(𝑥 − 𝑥0) = 6 + 𝑥2

0
− 2𝑥0𝑥.

Now, this straight line meets the Y axis at 𝐴(0, 6 + 𝑥2

0
), and the X

axis at 𝐵
(
(6 + 𝑥2

0
)/2𝑥0 , 0

)
, so the area of the triangle will be

𝐴 =
(6 + 𝑥2

0
)2

4𝑥0

=
9

𝑥0

+ 3𝑥0 +
𝑥3

0

4

= 𝑓 (𝑥0).

Minimising the area means solving

𝑓 ′(𝑥0) = − 9

𝑥2

0

+3+
3𝑥2

0

4

=
3(𝑥4

0
+ 4𝑥2

0
− 12)

4𝑥2

0

=
3(𝑥2

0
+ 6)(𝑥2

0
− 2)

4𝑥2

0

= 0.

The only meaningful solution to this equation is 𝑥0 =
√

2.

(f) The area of the triangle at the base is 𝑎2

√
3/4, and that of the lateral

rectangles 3𝑎ℎ, so the total cost will be

𝐶 = 0.20 × 𝑎2

√
3

4

+ 0.10 × 3𝑎ℎ = 0.10 ×
√

3

(
𝑎2

2

+
√

3𝑎ℎ

)
.

Since 128 = ℎ𝑎2

√
3/4 we get

√
3𝑎ℎ = 512/𝑎, so 𝐶 = 0.10 ×

√
3 𝑓 (𝑎),

where

𝑓 (𝑎) = 𝑎2

2

+ 512

𝑎
.
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The value of 𝑎 minimising cost will be a solution of

𝑓 ′(𝑎) = 𝑎 − 512

𝑎2

= 0 ⇒ 𝑎3 = 512 ⇒ 𝑎 = 8.

(g) For a given 0 ≤ 𝑥 ≤ 2 the corresponding 𝑦 on the circunference is

given by

𝑦 =
√

1 − (𝑥 − 1)2 =
√
𝑥(2 − 𝑥).

Thus, the three points of the triangle are 𝐴(0, 0), 𝐵
(
𝑥,

√
𝑥(2 − 𝑥)

)
,

𝐶(𝑥, 0). The area of the triangle will then be 𝑆 = 𝑥
√
𝑥(2 − 𝑥)/2 =

𝑥3/2(2− 𝑥)1/2/2. So maximising this area is tantamount to maximis-

ing

𝑓 (𝑥) = 4𝑆2 = 𝑥3(2 − 𝑥) = 2𝑥3 − 𝑥4.

The corresponding 𝑥 will be a solution of

𝑓 ′(𝑥) = 6𝑥2 − 4𝑥3 = 2𝑥2(3 − 2𝑥) = 0.

The only meaningful solution is 𝑥 = 3/2.

(h) Triangle similarity implies

𝑦0 + 𝛽

𝑥0 + 𝛼
=

𝛽

𝑥0

⇒ 𝑥0𝑦0 +�
�𝛽𝑥0 = �

�𝛽𝑥0 + 𝛽𝛼 ⇒ 𝛽 =
𝑥0𝑦0

𝛼
.

(i) The length of segment AB is

ℓ =
√
(𝑥0 + 𝛼)2 + (𝑦0 + 𝛽)2 =

√
(𝑥0 + 𝛼)2 +

(
𝑦0 +

𝑥0𝑦0

𝛼

)
2

=

√
(𝑥0 + 𝛼)2 +

𝑦2

0

𝛼2

(𝑥0 + 𝛼)2

= (𝑥0 + 𝛼)

√
1 +

𝑦2

0

𝛼2

.

So minimising ℓ is tantamount to minimising

𝑓 (𝛼) = ℓ 2 = (𝑥0 + 𝛼)2
(
1 +

𝑦2

0

𝛼2

)
.

Differentiating

𝑓 ′(𝛼) = 2(𝑥0 + 𝛼)
(
1 +

𝑦2

0

𝛼2

)
− 2(𝑥0 + 𝛼)2

𝑦2

0

𝛼3

= 2(𝑥0 + 𝛼)
(
1 +

�
�
�𝑦2

0

𝛼2

−
𝑥0𝑦

2

0

𝛼3

−
�
�
�𝑦2

0

𝛼2

)
= 2(𝑥0 + 𝛼)

(
1 −

𝑥0𝑦
2

0

𝛼3

)
= 0.

This equation has the solution

𝛼 =
(
𝑥0𝑦

2

0

)
1/3

, 𝛽 =
𝑥0𝑦0

𝛼
=

(
𝑥2

0
𝑦0

)
1/3

.

(ii) The sum of segments OA and OB is

𝑓 (𝛼) = 𝑥0 + 𝛼 + 𝑦0 + 𝛽 = 𝑥0 + 𝑦0 + 𝛼 + 𝑥0𝑦0

𝛼
.
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Differentiating

𝑓 ′(𝛼) = 1−𝑥0𝑦0

𝛼2

= 0 ⇒ 𝛼 = (𝑥0𝑦0)1/2 , 𝛽 =
𝑥0𝑦0

𝛼
=

(
𝑥0𝑦0

)
1/2

.

(iii) The area of the triangle is

𝐴 =
1

2

(𝑥0+𝛼)(𝑦0+𝛽) =
1

2

(𝑥0+𝛼)
(
𝑦0 +

𝑥0𝑦0

𝛼

)
=
𝑦0

2

(𝑥0 + 𝛼)2
𝛼

=
𝑦0

2

(
𝑥2

0

𝛼
+ 2𝑥0 + 𝛼

)
.

Minimising the area implies minimising

𝑓 (𝛼) = 2𝐴

𝑦0

=
𝑥2

0

𝛼
+ 2𝑥0 + 𝛼.

Differentiating

𝑓 ′(𝛼) = −
𝑥2

0

𝛼2

+ 1 = 0 ⇒ 𝛼 = 𝑥0 , 𝛽 =
𝑥0𝑦0

𝛼
= 𝑦0.

Exercise 4.3

(a) For 𝑎 = 1 the inequality becomes a trivial equality. For 𝑎 > 1 take

the function

𝑓 (𝑥) = (1 + 𝑥)𝑎 − 1 − 𝑎𝑥.

Differentiating,

𝑓 ′(𝑥) = 𝑎(1 + 𝑥)𝑎−1 − 𝑎 = 0 ⇒ (1 + 𝑥)𝑎−1 = 1 ⇒ 𝑥 = 0,

so 𝑥 = 0 is a local extremum. From the second derivative,

𝑓 ′′(𝑥) = 𝑎(𝑎 − 1)(1 + 𝑥)𝑎−2 ⇒ 𝑓 ′′(0) = 𝑎(𝑎 − 1) > 0

we conclude that 𝑥 = 0 is a minimum —the absolute minimum if

𝑥 > −1—, therefore 𝑓 (𝑥) ≥ 𝑓 (0) = 0 for every 𝑥 > −1. This means

(1 + 𝑥)𝑎 ≥ 1 + 𝑎𝑥.

(b) Take the function

𝑓 (𝑥) = 𝑒𝑥 − 1 − 𝑥.

Differentiating,

𝑓 ′(𝑥) = 𝑒𝑥 − 1 = 0 ⇒ 𝑥 = 0,

so 𝑥 = 0 is a local extremum. From the second derivative,

𝑓 ′′(𝑥) = 𝑒𝑥 ⇒ 𝑓 ′′(0) = 1 > 0,

we conclude that 𝑥 = 0 is a minimum —which is absolute in this

case because there is no other one in ℝ. Therefore 𝑓 (𝑥) ≥ 𝑓 (0) = 0

for every 𝑥 ∈ ℝ, i.e.,

𝑒𝑥 ≥ 1 + 𝑥.

(c) Take the function

𝑓 (𝑥) = log(1 + 𝑥) − 𝑥

1 + 𝑥 .
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Differentiating,

𝑓 ′(𝑥) = 1

1 + 𝑥 − 1

(1 + 𝑥)2 =
𝑥

(1 + 𝑥)2 = 0 ⇒ 𝑥 = 0,

so 𝑥 = 0 is a local extremum. From the second derivative,

𝑓 ′′(𝑥) = − 1

(1 + 𝑥)2 + 2

(1 + 𝑥)3 =
1 − 𝑥

(1 + 𝑥)3 ⇒ 𝑓 ′′(0) = 1 > 0,

we conclude that 𝑥 = 0 is a minimum —which is absolute in

this case because there is no other one when 𝑥 > −1. Therefore

𝑓 (𝑥) ≥ 𝑓 (0) = 0 for every 𝑥 > −1. This proves the first inequality.

As for the second, take

𝑔(𝑥) = 𝑥 − log(1 + 𝑥)

and differentiate:

𝑔′(𝑥) = 1 − 1

1 + 𝑥 =
𝑥

1 + 𝑥 = 0 ⇒ 𝑥 = 0,

so 𝑥 = 0 is a local extremum. From the second derivative,

𝑓 ′′(𝑥) = 1

(1 + 𝑥)2 ⇒ 𝑓 ′′(0) = 1 > 0,

we conclude that 𝑥 = 0 is a minimum —again absolute—, so

𝑓 (𝑥) ≥ 𝑓 (0) = 0 for every 𝑥 > −1. This proves the second inequality.

Exercise 4.4

(i) The polynomial 𝑓 (𝑥) = 𝑥7 + 4𝑥 − 3 ∼ 𝑥7
as 𝑥 → ±∞, so 𝑓 (𝑥) → ∞

as 𝑥 → ∞ and 𝑓 (𝑥) → −∞ as 𝑥 → −∞. Thus 𝑓 (𝑥) = 0 at at least

one point. What we need to know is to figure out how many times

𝑓 (𝑥) bends up and down and from that determining the number

of times it crosses the X axis. Now,

𝑓 ′(𝑥) = 7𝑥6 + 4 > 0

for all 𝑥 ∈ ℝ, therefore 𝑓 (𝑥) increases monotonically. The conclu-

sion is that there is only one solution.

(ii) Similarly to the previous exercise, 𝑓 (𝑥) = 𝑥5 − 5𝑥 + 6 ∼ 𝑥5
as

𝑥 → ±∞, so 𝑓 (𝑥) → ∞ as 𝑥 → ∞ and 𝑓 (𝑥) → −∞ as 𝑥 → −∞.

Thus 𝑓 (𝑥) = 0 at at least one point. Now,

𝑓 ′(𝑥) = 5𝑥4 − 5 = 0 ⇒ 𝑥 = ±1,

and from the second derivative

𝑓 ′′(𝑥) = 20𝑥3 ⇒ 𝑓 ′′(1) = 20 > 0, 𝑓 ′′(−1) = −20 < 0,

so we conclude that 𝑥 = −1 is a local minimum and 𝑥 = 1 a local

maximum. But 𝑓 (1) = 2 > 0 and 𝑓 (−1) = 10 > 0, so the local

minimum is above the X axis. In conclusion, there is only one
solution.

(iii) 𝑓 (𝑥) = 𝑥4 − 4𝑥3 − 1 ∼ 𝑥4
as 𝑥 → ±∞, so 𝑓 (𝑥) → ∞ when 𝑥 → ±∞.

It is not guaranteed that there is even a single solution. From the
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derivative,

𝑓 ′(𝑥) = 4𝑥3 − 12𝑥2 = 4𝑥2(𝑥 − 3) = 0

we conclude that 𝑥 = 0 and 𝑥 = 3 may be extrema. 𝑓 ′(𝑥) < 0

around 𝑥 = 0 (at both sides), so it is an inflection point. However,

close to 𝑥 = 3 we have 𝑓 ′(𝑥) < 0 for 𝑥 < 3 and 𝑓 ′(𝑥) > 0 for

𝑥 > 3, so at 𝑥 = 3 the polynomial reaches its absolute minimum

𝑓 (3) = −28. Since this value is below the X axis, 𝑓 (𝑥) has to cross it

twice. Therefore there are two solutions to the equation.

(iv) The function 𝑓 (𝑥) = 2𝑥 − 1 − sin 𝑥 ∼ 2𝑥 as 𝑥 → ±∞, so 𝑓 (𝑥) → ∞
as 𝑥 → ∞ and 𝑓 (𝑥) → −∞ as 𝑥 → −∞. Thus 𝑓 (𝑥) = 0 at at least

one point. Now,

𝑓 ′(𝑥) = 2 − cos 𝑥 > 0 for all 𝑥 ∈ ℝ,

so 𝑓 (𝑥) monotonically increases. Therefore there is only one solu-

tion.

(v) Let us first rewite the equation. Taking logarithms the equation

becomes

𝑓 (𝑥) = 𝑥 log 𝑥 − log 2 = 0.

𝑓 (1) = − log 2 < 0 and 𝑓 (𝑥) → ∞ as 𝑥 → ∞, so 𝑓 (𝑥) vanishes at

one point at least. Now,

𝑓 ′(𝑥) = log 𝑥 + 1,

which is 𝑓 ′(𝑥) < 0 for 𝑥 < 1/𝑒 and 𝑓 ′(𝑥) > 0 for 𝑥 > 1/𝑒. In

other words, 𝑓 ′(𝑥) > 0 in the interval [1,∞), so 𝑓 (𝑥) monotonically

increases in that interval. Therefore there is only one solution.

(vi) Writing the equation

𝑓 (𝑥) = 𝑥2 + log 𝑥 = 0

we have 𝑓 (1) = 1 > 0, and 𝑓 (𝑥) ∼ 𝑥2
as 𝑥 → ±∞, so 𝑓 (𝑥) → ∞ as

𝑥 → ±∞. There is no guarantee that the equation has even a single

solution in that interval. From the derivative,

𝑓 ′(𝑥) = 2𝑥 + 1

𝑥
=

2𝑥2 + 1

𝑥

we conclude that 𝑓 ′(𝑥) > 0 in (1,∞), so 𝑓 (𝑥) increases monotoni-

cally. Therefore the equation has no solution in that interval.

Exercise 4.5 Since sin 𝑥 = 𝑥 + 𝑜(𝑥), then 𝑓 (𝑥) = 1 + 𝑥4 + 𝑜(𝑥4), when

𝑥 → 0. Thus 𝑃4,0(𝑥) = 1 + 𝑥4
. Accordingly 𝑓 has a local minimum at

𝑥 = 0.

Exercise 4.6 Let us compute two derivatives of ℎ:

ℎ′ = ( 𝑓 ′◦𝑔)𝑔′, ℎ′′ = ( 𝑓 ′◦𝑔)′𝑔′+( 𝑓 ′◦𝑔)𝑔′′ = ( 𝑓 ′′◦𝑔)(𝑔′)2+( 𝑓 ′◦𝑔)𝑔′′.

Since 𝑓 is convex 𝑓 ′′ ◦ 𝑔 > 0; since 𝑓 is increasing 𝑓 ′ ◦ 𝑔 > 0; since 𝑔

is convex 𝑔′′ > 0; and of course (𝑔′)2 ≥ 0. Therefore ℎ′′ > 0, hence ℎ is

convex.
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Exercise 4.7

(i) 𝑓 (𝑥) = 𝑥5/3 − 2𝑥2/3
, so

𝑓 ′(𝑥) = 5

3

𝑥2/3−4

3

𝑥−1/3 , 𝑓 ′′(𝑥) = 10

9

𝑥−1/3+4

9

𝑥−4/3 =
10

9

𝑥−4/3

(
𝑥 + 2

5

)
.

Since 𝑥−4/3 > 0 for all 𝑥 ≠ 0, then 𝑓 (𝑥) is concave for 𝑥 < −2/5 and

convex in −2/5 < 𝑥 < 0 and 𝑥 > 0. At 𝑥 = −2/5 it has an inflection

point, and at 𝑥 = 0 the function has a nondifferentiable cusp.

(ii) 𝑓 (𝑥) is not differentiable at 𝑥 = 0. Now, for 𝑥 > 0

𝑓 (𝑥) = 𝑥𝑒𝑥 , 𝑓 ′(𝑥) = (𝑥 + 1)𝑒𝑥 , 𝑓 ′′(𝑥) = (𝑥 + 2)𝑒𝑥 ,

so the funtion is always convex. On the other hand, the function is

even (because 𝑓 (−𝑥) = 𝑓 (𝑥)), so it is convex also for 𝑥 < 0.

(iii) 𝑥2 − 6𝑥 + 8 = (𝑥 − 2)(𝑥 − 4), so the domain of this function is

(−∞, 2) ∪ (4,∞). On the other hand, in its domain

𝑓 (𝑥) = log(𝑥2 −6𝑥+8) = log |𝑥2 −6𝑥+8| = log |𝑥−2|+ log |𝑥−4|,

so

𝑓 ′(𝑥) = 1

𝑥 − 2

+ 1

𝑥 − 4

, 𝑓 ′′(𝑥) = − 1

(𝑥 − 2)2 − 1

(𝑥 − 4)2 ,

and then we have 𝑓 ′′(𝑥) < 0 in the whole domain of the function.

Thus 𝑓 (𝑥) is concave.

Exercise 4.8

(i) 𝑓 (𝑥) = 𝑥 + log |𝑥2 − 1|:

(ii) 𝑔(𝑥) = 𝑓 (|𝑥|) ℎ(𝑥) = | 𝑓 (𝑥)|:
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Exercise 4.9

(i) 𝑓 (𝑥) = 𝑒𝑥 sin 𝑥: this function oscillates between 𝑦 = 𝑒𝑥 and 𝑦 = −𝑒𝑥 ,
crossing the X axis at 𝑥 = 𝑛𝜋, where 𝑛 ∈ ℤ.

(ii) 𝑓 (𝑥) =
√
𝑥2 − 1 − 1:

(iii) 𝑓 (𝑥) = 𝑥𝑒1/𝑥
:
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(iv) 𝑓 (𝑥) = 𝑥2𝑒𝑥 :

(v) 𝑓 (𝑥) = (𝑥 − 2)𝑥2/3
:

(vi) 𝑓 (𝑥) = (𝑥2 − 1) log

(
1 + 𝑥
1 − 𝑥

)
:
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(vii) 𝑓 (𝑥) = 𝑥

log 𝑥
:

(viii) 𝑓 (𝑥) = 𝑥2 − 1

𝑥2 + 1

:
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(ix) 𝑓 (𝑥) = 𝑒1/𝑥

1 − 𝑥 :

(x) 𝑓 (𝑥) = log

[
(𝑥 − 1)(𝑥 − 2)

]
:

(xi) 𝑓 (𝑥) = 𝑒𝑥

𝑥(𝑥 − 1) :
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(xii) 𝑓 (𝑥) = 2 sin 𝑥 + cos 2𝑥:

(xiii) 𝑓 (𝑥) = 𝑥 − 2√
4𝑥2 + 1

:
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(xiv) 𝑓 (𝑥) =
√
|𝑥 − 4|:

(xv) 𝑓 (𝑥) = 1

1 + 𝑒𝑥 :

(xvi) 𝑓 (𝑥) = 𝑒2𝑥

𝑒𝑥 − 1

:
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(xvii) 𝑓 (𝑥) = 𝑒−𝑥 sin 𝑥: this function oscillates between 𝑦 = 𝑒−𝑥 and

𝑦 = −𝑒−𝑥 , crossing the X axis at 𝑥 = 𝑛𝜋, where 𝑛 ∈ ℤ.

(xviii) 𝑓 (𝑥) = 𝑥2

sin

1

𝑥
: this function has an oblique asymptote because

sin

1

𝑥
=

1

𝑥
+ 𝑜

(
1

𝑥2

)
(𝑥 → ±∞)

(given that sin 𝑡 = 𝑡 + 𝑜(𝑡2) (𝑡 → 0)); hence

𝑓 (𝑥) = 𝑥2

[
1

𝑥
+ 𝑜

(
1

𝑥2

)]
= 𝑥 + 𝑜(1) (𝑥 → ±∞).

Therefore the function looks different on a small scale and on a

large scale. On a small scale it is an oscillatory function between

−𝑥2
and 𝑥2

that crosses the X axis at 𝑥 = ± 1

𝑛𝜋 , for all 𝑛 ∈ ℤ − {0};

on a large scale it asymptotes to 𝑦 = 𝑥:
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Exercise 4.10

(i) 𝑓 (𝑥) = min{log |𝑥3 − 3|, log |𝑥 + 3|}:

(ii) 𝑓 (𝑥) = 1

|𝑥| − 1

− 1

|𝑥 − 1| : this function has a different form for 𝑥 > 1,

for 0 < 𝑥 < 1 and for 𝑥 < 0.

For 𝑥 > 1

𝑓 (𝑥) = 1

𝑥 − 1

− 1

𝑥 − 1

= 0.

For 0 < 𝑥 < 1 we have |𝑥 − 1| = −(𝑥 − 1) so

𝑓 (𝑥) = 1

𝑥 − 1

+ 1

𝑥 − 1

=
2

𝑥 − 1

.

For 𝑥 < 0 we have |𝑥| − 1 = −(𝑥 + 1) and |𝑥 − 1| = −(𝑥 − 1), so

𝑓 (𝑥) = − 1

𝑥 + 1

+ 1

𝑥 − 1

=
2

𝑥2 − 1

.
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(iii) 𝑓 (𝑥) = 1

1 + |𝑥| −
1

1 + |𝑥 − 𝑎| (𝑎 > 0): this function also has different

definitions depending on whether 𝑥 > 𝑎, 0 < 𝑥 < 𝑎, or 𝑥 < 0.

For 𝑥 > 𝑎

𝑓 (𝑥) = 1

1 + 𝑥 − 1

1 + 𝑥 − 𝑎 =
−𝑎

(𝑥 + 1)(𝑥 − 𝑎 + 1) ,

which has two vertical asymptotes, 𝑥 = −1 and 𝑥 = 𝑎 − 1, both out

of the region 𝑥 > 𝑎.

For 0 < 𝑥 < 𝑎

𝑓 (𝑥) = 1

1 + 𝑥 − 1

1 + 𝑎 − 𝑥 =
2𝑥 − 𝑎

(𝑥 + 1)(𝑥 − 𝑎 − 1) ,

which again has two asymptotes, 𝑥 = −1 and 𝑥 = 𝑎 + 1, both out of

the region 0 < 𝑥 < 𝑎.

For 𝑥 < 0

𝑓 (𝑥) = 1

1 − 𝑥 − 1

1 + 𝑎 − 𝑥 =
𝑎

(𝑥 − 1)(𝑥 − 𝑎 − 1) ,

which also has two asymptotes, 𝑥 = 1 and 𝑥 = 𝑎 + 1, both out of

the region 𝑥 < 0.

Here is a plot for 𝑎 = 5 (which is generic):
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(iv) 𝑓 (𝑥) = 𝑥
√
𝑥2 − 1: notice that

𝑓 (𝑥) = 𝑥|𝑥|
√

1 − 1

𝑥2

,

and since

√
1 − 𝑡 = 1 − 𝑡/2 + 𝑜(𝑡) (𝑡 → 0), when 𝑥 → ±∞,

𝑓 (𝑥) = 𝑥|𝑥|
[
1 − 1

2𝑥2

+ 𝑜
(

1

𝑥2

)]
= 𝑥|𝑥|− |𝑥|

2𝑥
+𝑜(1) =

{
𝑥2 − 1

2
+ 𝑜(1) (𝑥 → ∞),

−𝑥2 + 1

2
+ 𝑜(1) (𝑥 → −∞).

(v) 𝑓 (𝑥) = arctan log |𝑥2 − 1|: when 𝑥 → ±1 the logarithm diverges to

−∞, so 𝑓 (𝑥) → −𝜋/2. In other words, even though the function is

not well defined in 𝑥 = ±1, at these two points it has an avoidable
discontinuity which can be remedied by setting 𝑓 (±1) = −𝜋/2.

On the other hand, as 𝑥 → ±∞ the logarithm diverges to ∞ and

therefore 𝑓 (𝑥) → 𝜋/2.

(vi) 𝑓 (𝑥) = 2 arctan 𝑥 + arcsin

(
2𝑥

1 + 𝑥2

)
: the domain of this function is

ℝ because so is the domain of arctan 𝑥 and the argument of the
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arcsin is within [−1, 1]. To see this

(𝑥 − 1)2 ≥ 0 ⇔ 𝑥2 − 2𝑥 + 1 ≥ 0 ⇔ 𝑥2 + 1 ≥ 2𝑥 ⇔ 2𝑥

𝑥2 + 1

≤ 1,

(𝑥 + 1)2 ≥ 0 ⇔ 𝑥2 + 2𝑥 + 1 ≥ 0 ⇔ 𝑥2 + 1 ≥ −2𝑥 ⇔ − 2𝑥

𝑥2 + 1

≤ 1

⇔ 2𝑥

𝑥2 + 1

≥ −1.

if we calculate 𝑓 ′(𝑥), using the fact that(
2𝑥

1 + 𝑥2

) ′
=

2(1 + 𝑥2) − (2𝑥)2
(1 + 𝑥2)2 =

2(1 − 𝑥2)
(1 + 𝑥2)2 ,

we obtain

𝑓 ′(𝑥) = 2

1 + 𝑥2

+ 1√
1 − 4𝑥2

(1+𝑥2)2

2(1 − 𝑥2)
(1 + 𝑥2)2 .

But

1 − 4𝑥2

(1 + 𝑥2)2 =
1 + 2𝑥2 + 𝑥4 − 4𝑥2

(1 + 𝑥2)2 =
1 − 2𝑥2 + 𝑥4

(1 + 𝑥2)2 =
(1 − 𝑥2)2
(1 + 𝑥2)2 ,

so

𝑓 ′(𝑥) = 2

1 + 𝑥2

+ (1 + 𝑥2)
|1 − 𝑥2| ·

2(1 − 𝑥2)
(1 + 𝑥2)2 =

2

1 + 𝑥2

[
1 + 1 − 𝑥2

|1 − 𝑥2|

]
.

Now

1 − 𝑥2

|1 − 𝑥2| =
{

1, |𝑥| < 1,

−1, |𝑥| > 1,

therefore

𝑓 ′(𝑥) =


4

1 + 𝑥2

, |𝑥| < 1,

0, |𝑥| > 1.

Function 𝑓 (𝑥) is thus constant if |𝑥| > 1 and strictly increasing if

|𝑥| < 1. Besides, 𝑓 (𝑥) is obviously continuous because so are all

functions involved, so the constant values it takes for 𝑥 ≥ 1 and

𝑥 ≤ −1 can be found as

𝑓 (±1) = ±2 arctan 1 + ± arcsin 1 = ±
(
2 · 𝜋

4

+ 𝜋
2

)
= ±𝜋.
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A.5 Fundamental Theorem of Calculus

Exercise 5.1

(a) Changing 𝑥 = −𝑡,

𝐼 =

∫ 𝑎

−𝑎
𝑓 (𝑥) 𝑑𝑥 =

∫ 𝑎

−𝑎
𝑓 (−𝑡) 𝑑𝑡 = −

∫ 𝑎

−𝑎
𝑓 (𝑡) 𝑑𝑡 = −𝐼 ⇒ 2𝐼 = 0 ⇒ 𝐼 = 0.

(b) Using the same change,∫ 𝑎

−𝑎
𝑓 (𝑥) 𝑑𝑥 =

∫ 𝑎

0

𝑓 (𝑥) 𝑑𝑥+
∫

0

−𝑎
𝑓 (𝑥) 𝑑𝑥 =

∫ 𝑎

0

𝑓 (𝑥) 𝑑𝑥+
∫ 𝑎

0

𝑓 (−𝑡)︸︷︷︸
= 𝑓 (𝑡)

𝑑𝑡 = 2

∫ 𝑎

0

𝑓 (𝑥) 𝑑𝑥.

(c) Changing 𝑡 = 𝑥 − 8,∫
10

6

sin

(
sin

(
(𝑥 − 8)3

) )
𝑑𝑥 =

∫
2

−2

sin

(
sin

(
𝑡3

) )
𝑑𝑡 = 0

because the integrand is an odd function.

Exercise 5.2 We will approximate each integral using 𝑛 equal subintervals

and compare the results with the exact values.

(a)

∫
1

−1

(1 − 𝑥2) 𝑑𝑥 with 𝑛 = 5 subintervals.

First, divide the interval [−1, 1] into 𝑛 = 5 equal subintervals. The

length of each subinterval is

𝑤 =
1 − (−1)

5

=
2

5

= 0.4.

The approximation of the integral by rectangles is given by

𝑇5 = 𝑤
(
𝑓 (−1) + 𝑓 (−0.6) + 𝑓 (−0.2) + 𝑓 (0.2) + 𝑓 (0.6)

)
= 0.4∗(0+0.64+0.84+0.84+0.64) = 1.28

The exact value of the integral is∫
1

−1

(1 − 𝑥2) 𝑑𝑥 =

[
𝑥 − 𝑥3

3

]
1

−1

=

(
1 − 1

3

)
−

(
−1 + 1

3

)
=

4

3

≈ 1.333.

(b)

∫
2

−1

𝑒−𝑥 𝑑𝑥 with 𝑛 = 3 subintervals.

The length of each subinterval is

ℎ =
2 − (−1)

3

= 1.

The approximation of the integral by rectangles is given by

𝑇3 = 𝑓 (−1) + 𝑓 (0) + 𝑓 (1) = 𝑒1 + 1 + 𝑒−1 = 4.086161269630487 . . .

The exact value of the integral is∫
2

−1

𝑒−𝑥 𝑑𝑥 = [−𝑒−𝑥]2−1
= −(𝑒−2 − 𝑒1) = 2.5829465452224323 . . .

(c)

∫ 𝜋

0

sin 𝑥 𝑑𝑥 with 𝑛 = 4 subintervals.
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The length of each subinterval is

ℎ =
𝜋 − 0

4

=
𝜋
4

.

The approximation is

𝑇4 =
𝜋
4

(
𝑓 (0) + 𝑓 (𝜋/4) + 𝑓 (𝜋/2) + 𝑓 (3𝜋/4)

)
=

𝜋
4

(
0 +

√
2

2

+ 1 +
√

2

2

)
= 1.8961188979370398 . . .

The exact value of the integral is∫ 𝜋

0

sin 𝑥 𝑑𝑥 = [− cos 𝑥]𝜋
0
= 2.

Exercise 5.3 We will calculate each integral by interpreting it as the

signed area under the graph of the function. In each case, we recognize

the geometric shape and apply the appropriate area formula.

(a)

∫
3

−3

|𝑥| 𝑑𝑥
The graph of 𝑓 (𝑥) = |𝑥| forms a "V" shape, symmetric about the

𝑦-axis. This is made of two triangles, each with base 3 and height 3.

The area of one triangle is:

𝐴 =
1

2

× base × height =
1

2

× 3 × 3 = 4.5.

Since the graph is symmetric, the total area is 2×4.5 = 9. Therefore,

the value of the integral is:∫
3

−3

|𝑥| 𝑑𝑥 = 9.

(b)

∫
3

−3

√
9 − 𝑥2 𝑑𝑥

The graph of 𝑓 (𝑥) =
√

9 − 𝑥2
is a semicircle with radius 3 centered

at the origin. The area of a full circle is 𝐴 = 𝜋𝑟2 = 𝜋(32) = 9𝜋, and

the area of the upper half of the circle (which is the region under

the graph) is:

𝐴 =
1

2

× 9𝜋 =
9𝜋
2

.

Therefore, the value of the integral is:∫
3

−3

√
9 − 𝑥2 𝑑𝑥 =

9𝜋
2

.

(c)

∫
5

2

(
𝑥
2
− 4

)
𝑑𝑥

The graph of 𝑓 (𝑥) = 𝑥
2
− 4 is a straight line, and we are integrating

from 𝑥 = 2 to 𝑥 = 5. This region forms a trapezoid. The height of the

trapezoid is the difference between the 𝑥-coordinates: ℎ = 5−2 = 3.

The function values at the endpoints are:

𝑓 (2) = 2

2

− 4 = −3, 𝑓 (5) = 5

2

− 4 = −3

2

.

The area of the trapezoid is:

𝐴 =
1

2

× (𝑏1 + 𝑏2) × ℎ =
1

2

× (−3 + −3

2

) × 3 =
1

2

× −9

2

× 3 = −27

4

.
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Therefore, the value of the integral is:∫
5

2

(
𝑥

2

− 4

)
𝑑𝑥 = −27

4

.

(d)

∫
2

−1

(2 − |𝑥|) 𝑑𝑥
The graph of 𝑓 (𝑥) = 2− |𝑥| forms a trapezoid from 𝑥 = −1 to 𝑥 = 0,

with area 𝐴1 = 1/2 and a triangle form 𝑥 = 0 to 𝑥 = 2, with area

𝐴2 = 2. The value of the integral is then 𝐴 = 5/2.

Exercise 5.4 (i) For 𝑥 < 1/2,

𝐹(𝑥) =
∫ 𝑥

−1

(
1

2

− 𝑡
)
𝑑𝑡 =

2 + 𝑥 − 𝑥2

2

=
(2 − 𝑥)(1 + 𝑥)

2

For 𝑥 ≥ 1/2,

𝐹(𝑥) =
∫

1/2

−1

(
1

2

− 𝑡
)
𝑑𝑡 +

∫ 𝑥

1/2

(
𝑡 − 1

2

)
𝑑𝑡 =

9

4

+ (𝑥 − 2)(1 + 𝑥)
2

.

(ii) For 𝑥 < 0,

𝐹(𝑥) =
∫ 𝑥

−1

(−1) 𝑑𝑡 = −1 − 𝑥.

For 𝑥 ≥ 0,

𝐹(𝑥) =
∫

0

−1

(−1) 𝑑𝑡 +
∫ 𝑥

0

𝑑𝑡 = −1 + 𝑥.

Thus, 𝐹(𝑥) = |𝑥| − 1.

(iii) For 𝑥 < 0,

𝐹(𝑥) =
∫ 𝑥

−1

𝑡2 𝑑𝑡 =
𝑥3 + 1

3

.

For 𝑥 ≥ 0,

𝐹(𝑥) =
∫

0

−1

𝑡2 𝑑𝑡+
∫ 𝑥

0

(𝑡2−1)𝑑𝑡 =
∫ 𝑥

−1

𝑡2 𝑑𝑡−
∫ 𝑥

0

𝑑𝑡 =
𝑥3 + 1

3

−𝑥 =
𝑥3 − 3𝑥 + 1

3

.

(iv) For 𝑥 ≤ 0,

𝐹(𝑥) =
∫ 𝑥

−1

𝑑𝑡 = 𝑥 + 1.

For 𝑥 > 0,

𝐹(𝑥) =
∫

0

−1

𝑑𝑡 +
∫ 𝑥

0

(𝑡 + 1)𝑑𝑡 =
∫ 𝑥

−1

𝑑𝑡 +
∫ 𝑥

0

𝑡 𝑑𝑡 =
𝑥2

2

+ 𝑥 + 1.

(v) For 𝑥 ≤ −1/2,

𝐹(𝑥) =
∫ 𝑥

−1

(1 + 𝑡) 𝑑𝑡 = (1 + 𝑥)2
2

.

For −1/2 < 𝑥 < 1/2,

𝐹(𝑥) =
∫ −1/2

−1

(1 + 𝑡) 𝑑𝑡 + 1

2

∫ 𝑥

−1/2

𝑑𝑡 =
1

8

+ 2𝑥 + 1

4

=
4𝑥 + 3

8

.
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For 𝑥 ≥ 1/2,

𝐹(𝑥) =
∫ −1/2

−1

(1+ 𝑡) 𝑑𝑡 + 1

2

∫
1/2

−1/2

𝑑𝑡 +
∫ 𝑥

1/2

(1− 𝑡) 𝑑𝑡 = 3

4

− (1 − 𝑥)2
2

.

Exercise 5.5

(i) 𝐹′(𝑥) = 3𝑒𝑥
3 − 2𝑒𝑥

2

𝑥
.

(ii) 𝐹′(𝑥) = 6𝑥2

1 + sin
2 (𝑥3)

.

(iii) 𝐹′(𝑥) = 2𝑥

∫ 𝑥

0

𝑓 (𝑡) 𝑑𝑡 + 𝑥2 𝑓 (𝑥).

Exercise 5.6 𝑓 ′(𝑥) = 𝑒−(𝑥−1)2 − 𝑒−2(𝑥−1)
, so 𝑓 ′(𝑥) = 0 when (𝑥−1)2 = 2(𝑥−

1), i.e., when 𝑥 = 1 or 𝑥 = 3. Between those two values (𝑥− 1)2 < 2(𝑥− 1),
and for 𝑥 > 3 the opposite holds. Therefore 𝑓 ′(𝑥) > 0 for 1 < 𝑥 < 3 and

𝑓 ′(𝑥) < 0 for 𝑥 > 3. Thus there is a local maximum at 𝑥 = 3 —which

is the absolute maximum. To obtain the absolute minimum we need to

obtain

lim

𝑥→∞
𝑓 (𝑥) = lim

𝑥→∞

(∫ 𝑥−1

0

𝑒−𝑡
2

𝑑𝑡 −
∫ 𝑥−1

0

𝑒−2𝑡 𝑑𝑡

)
=

√
𝜋

2

− lim

𝑥→∞
1

2

(
1 − 𝑒−2(𝑥−1)

)
=

√
𝜋 − 1

2

> 0.

Since 𝑓 (1) = 0, the absolute minimum is reached at 𝑥 = 1.

Exercise 5.7 Function 𝑓 (𝑥) =

∫ 𝑥

0

𝑒 𝑡
2

𝑑𝑡 − 1 is an increasing function

because 𝑓 ′(𝑥) = 𝑒𝑥
2

> 0. Further 𝑓 (0) = −1. On the other hand, 𝑒 𝑡
2

> 1

for all 𝑡 > 0, so

𝑓 (1) =
∫

1

0

𝑒 𝑡
2

𝑑𝑡 − 1 >

∫
1

0

𝑑𝑡 − 1 = 0.

Therefore 𝑓 (𝑥) = 0 has a unique solution in (0, 1).

Exercise 5.8 𝐹(𝑥) is a continuous function (is the difference of two

integrals) in [0, 1]. On the other hand,

𝐹(0) = 2

���
��∫

0

0

𝑓 (𝑡) 𝑑𝑡 −
∫

1

0

𝑓 (𝑡) 𝑑𝑡 = −
∫

1

0

𝑓 (𝑡) 𝑑𝑡 < 0

(it is negative because 𝑓 (𝑥) > 0 in [0, 1], therefore the integral is positive),

and

𝐹(1) = 2

∫
1

0

𝑓 (𝑡) 𝑑𝑡 −
�
����∫
1

1

𝑓 (𝑡) 𝑑𝑡 = 2

∫
1

0

𝑓 (𝑡) 𝑑𝑡 > 0

(it is positive for the same reason). Since 𝐹(𝑥) has opposite signs at the

extremes of the interval it must be zero somewhere in between. Thus,

the equation 𝐹(𝑥) = 0 has at least one solution. To see that there are no

more solutions we differentiate

𝐹′(𝑥) = 2 𝑓 (𝑥) − 𝑓 (𝑥)(−1) = 3 𝑓 (𝑥) > 0.

Therefore 𝐹(𝑥) increases monotonically in [0, 1], hence can be zero only

once in the interval.



A Solutions to Exercises 159

Exercise 5.9

𝑓 ′(𝑥) = 1

𝑎2 + 𝑥2

− 1

𝑥2

1

𝑎2 + 1/𝑥2

=
1

𝑎2 + 𝑥2

− 1

𝑎2𝑥2 + 1

,

so in order to have 𝑓 ′(𝑥) = 0 for any 𝑥 we need 𝑎 = ±1.

Exercise 5.10

(a) 𝑑𝑡 = 2 sin𝜃 cos𝜃 𝑑𝜃 = sin 2𝜃 𝑑𝜃, therefore

𝐼 =

∫
1

0

arcsin

√
𝑡 𝑑𝑡 =

∫ 𝜋/2

0

arcsin(sin𝜃) sin 2𝜃 𝑑𝜃 =

∫ 𝜋/2

0

𝜃 sin 2𝜃 𝑑𝜃.

We can now integrate by parts, where 𝑢 = 𝜃 and 𝑣′ = sin 2𝜃, and

then

𝐼 = −𝜃
2

cos 2𝜃

����𝜋/2

0

+ 1

2

∫ 𝜋/2

0

cos 2𝜃 𝑑𝜃 =
𝜋
4

+ 1

4

sin 2𝜃
���𝜋/2

0

=
𝜋
4

+0.

Thus ∫
1

0

arcsin

√
𝑡 𝑑𝑡 =

𝜋
4

.

(b) Differentiating,

𝑓 ′(𝑥) = 2 sin 𝑥 cos 𝑥 arcsin(sin 𝑥)−2 cos 𝑥 sin 𝑥 arccos(cos 𝑥) = 𝑥 sin 2𝑥−𝑥 sin 2𝑥 = 0.

Therefore 𝑓 (𝑥) is constant.

(c) We can calculate 𝑐 by substituting any value of 𝑥, for instance

𝑥 = 𝜋/2. Then

𝑐 = 𝑓 (𝜋/2) =
∫

1

0

arcsin

√
𝑡 𝑑𝑡+

∫
0

0

arccos

√
𝑡 𝑑𝑡 =

∫
1

0

arcsin

√
𝑡 𝑑𝑡.

But this is precisely the integral we have obtained in (a), so 𝑐 = 𝜋/4.

Exercise 5.11

(a) With this change of variables the limits remain the same, so

𝐼 =

∫ 𝜋

0

𝑥 𝑓 (sin 𝑥) 𝑑𝑥 =

∫ 𝜋

0

(𝜋 − 𝑦) 𝑓 (sin

(
𝜋 − 𝑦)

)
𝑑𝑦.

But since sin(𝜋 − 𝑦) = sin 𝑦, we have

𝐼 =

∫ 𝜋

0

(𝜋 − 𝑦) 𝑓 (sin 𝑦) 𝑑𝑦 = 𝜋

∫ 𝜋

0

𝑓 (sin 𝑦) 𝑑𝑦 − 𝐼.

Thus

𝐼 =
𝜋
2

∫ 𝜋

0

𝑓 (sin 𝑥) 𝑑𝑥.

(b) Since

sin 𝑥

1 + cos
2 𝑥

=
sin 𝑥

2 − sin
2 𝑥

= 𝑓 (sin 𝑥),
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we are in the situation described in the previous item. Hence

𝐼 =

∫ 𝜋

0

𝑥 sin 𝑥

1 + cos
2 𝑥

𝑑𝑥 =
𝜋
2

∫ 𝜋

0

sin 𝑥

1 + cos
2 𝑥

𝑑𝑥 = −𝜋
2

∫ 𝜋

0

(cos 𝑥)′
1 + cos

2 𝑥
𝑑𝑥

= −𝜋
2

arctan(cos 𝑥)
���𝜋
0

= −𝜋
2

(−2 arctan 1) = 𝜋2

4

.

Exercise 5.12 (a) To find 𝑁(𝑡), we need to integrate the differential

equation:

𝑑𝑁

𝑑𝑡
= 𝑒−𝑡 .

Integrating both sides with respect to 𝑡, and knowing that 𝑁(0) =
100, we have:

𝑁(𝑡) − 𝑁(0) =
∫ 𝑡

0

𝑒−𝑡 𝑑𝑡 = 1 − 𝑒−𝑡 =⇒ = 𝑁(𝑡) = 101 − 𝑒−𝑡 .

(b) To compute the cumulative change in population size between

𝑡 = 0 and 𝑡 = 5, we need to evaluate the change in 𝑁(𝑡) over this

interval:

Δ𝑁 = 𝑁(5) − 𝑁(0).

We already know 𝑁(0) = 100. Now, calculate 𝑁(5):

𝑁(5) = −𝑒−5 + 101.

Using 𝑒−5 ≈ 0.0067, we have

𝑁(5) ≈ −0.0067 + 101 = 100.9933.

Therefore, the cumulative change in population size is:

Δ𝑁 = 100.9933 − 100 = 0.9933.

Hence, the cumulative change in population size between 𝑡 = 0

and 𝑡 = 5 is approximately 0.9933.

Exercise 5.13 We are given the velocity of a particle moving along the

𝑥-axis as

𝑣(𝑡) = −(𝑡 − 2)2 + 1

for 0 ≤ 𝑡 ≤ 5. We also know that the particle starts at the origin at time

𝑡 = 0. We will analyze the motion of the particle step by step.

(a) The particle moves to the right when its velocity 𝑣(𝑡) is positive,

and it moves to the left when 𝑣(𝑡) is negative. To find when this

happens, we first examine the graph and behavior of 𝑣(𝑡).
The velocity function is:

𝑣(𝑡) = −(𝑡 − 2)2 + 1.

This is a downward-opening parabola with its vertex at 𝑡 = 2 and

maximum value 𝑣(2) = 1. The roots of 𝑣(𝑡) = 0 occur when:

−(𝑡 − 2)2 + 1 = 0 ⇒ (𝑡 − 2)2 = 1 ⇒ 𝑡 − 2 = ±1,

which gives:

𝑡 = 1 and 𝑡 = 3.
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Therefore, 𝑣(𝑡) = 0 at 𝑡 = 1 and 𝑡 = 3.

Now, examine the sign of 𝑣(𝑡):
- For 0 ≤ 𝑡 < 1, 𝑣(𝑡) > 0, so the particle moves to the right.

- For 1 < 𝑡 < 3, 𝑣(𝑡) < 0, so the particle moves to the left.

- For 3 < 𝑡 ≤ 5, 𝑣(𝑡) > 0, so the particle moves to the right again.

Thus, the particle moves to the right on the intervals 0 ≤ 𝑡 < 1 and

3 < 𝑡 ≤ 5, and it moves to the left on the interval 1 < 𝑡 < 3.

(b) The position 𝑠(𝑡) of the particle is the integral of its velocity 𝑣(𝑡)
with respect to time. Since the particle is at the origin at 𝑡 = 0, we

have the initial condition 𝑠(0) = 0. Thus, we find 𝑠(𝑡) by integrating

𝑣(𝑡):

𝑠(𝑡) = 𝑠(0) +
∫ 𝑡

0

𝑣(𝜏) 𝑑𝜏 =

∫ 𝑡

0

(
−(𝜏 − 2)2 + 1

)
𝑑𝜏.

Let’s compute this integral:

𝑠(𝑡) =
∫ 𝑡

0

(
−(𝜏 − 2)2 + 1

)
𝑑𝜏 =

∫ 𝑡

0

−(𝜏2 − 4𝜏 + 4) + 1 𝑑𝜏.

Simplifying:

𝑠(𝑡) =
∫ 𝑡

0

(−𝜏2 + 4𝜏 − 3) 𝑑𝜏 =

[
−𝜏3

3

+ 2𝜏2 − 3𝜏

] 𝑡
0

.

Evaluating the definite integral:

𝑠(𝑡) = − 𝑡
3

3

+ 2𝑡2 − 3𝑡.

The location 𝑠(𝑡) represents the net area under the velocity curve

𝑣(𝑡) from 𝑡 = 0 to 𝑡. Positive areas (where 𝑣(𝑡) > 0) correspond

to the particle moving to the right, while negative areas (where

𝑣(𝑡) < 0) correspond to the particle moving to the left. The function

𝑠(𝑡) gives the cumulative displacement of the particle along the

𝑥-axis.

Exercise 5.14 We are given the average daily temperature function:

𝑇(𝑡) = 57.5 − 22.5 cos(2𝜋𝑡),

where 𝑡 represents the fraction of the year that has elapsed since January

1. We will solve the parts of the problem step by step.

(a) To find the average temperature over the year, we need to compute

the average value of the function 𝑇(𝑡) over the interval 0 ≤ 𝑡 ≤ 1.

The average value of a function over an interval [𝑎, 𝑏] is given by:

Average value =
1

𝑏 − 𝑎

∫ 𝑏

𝑎

𝑓 (𝑡) 𝑑𝑡.

Here, 𝑎 = 0, 𝑏 = 1, and 𝑓 (𝑡) = 𝑇(𝑡). Thus, the average temperature

is:

Average temperature =

∫
1

0

𝑇(𝑡) 𝑑𝑡 =
∫

1

0

(57.5 − 22.5 cos(2𝜋𝑡)) 𝑑𝑡.
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We can split the integral:∫
1

0

(57.5 − 22.5 cos(2𝜋𝑡)) 𝑑𝑡 = 57.5

∫
1

0

1 𝑑𝑡−22.5

∫
1

0

cos(2𝜋𝑡) 𝑑𝑡.

The first integral is straightforward:∫
1

0

1 𝑑𝑡 = 1.

For the second integral,∫
1

0

cos(2𝜋𝑡) 𝑑𝑡 = 1

2𝜋
sin(2𝜋𝑡)

���1
0

= 0.

Thus, the average temperature is:

Average temperature = 57.5 × 1 − 22.5 × 0 = 57.5.

(b) We can observe that the function𝑇(𝑡) = 57.5−22.5 cos(2𝜋𝑡) consists

of a constant term 57.5 and an oscillating term−22.5 cos(2𝜋𝑡). Since

cos(2𝜋𝑡) oscillates symmetrically about zero over the interval [0, 1],
its average value is zero. Therefore, the average value of 𝑇(𝑡) is

simply the constant 57.5, which is the baseline temperature. This

reasoning allows us to determine the average temperature without

performing any integration.

(c) Summer corresponds to the interval 0.47 ≤ 𝑡 ≤ 0.73. To find the

average temperature during the summer, we use the formula for

the average value of the function over this interval:

Average summer temperature =
1

0.73 − 0.47

∫
0.73

0.47

𝑇(𝑡) 𝑑𝑡.

First, simplify the factor:

1

0.73 − 0.47

=
1

0.26

.

Now, compute the integral:∫
0.73

0.47

𝑇(𝑡) 𝑑𝑡 =
∫

0.73

0.47

(57.5 − 22.5 cos(2𝜋𝑡)) 𝑑𝑡.

Again, we split the integral:∫
0.73

0.47

(57.5 − 22.5 cos(2𝜋𝑡)) 𝑑𝑡 = 57.5

∫
0.73

0.47

1 𝑑𝑡−22.5

∫
0.73

0.47

cos(2𝜋𝑡) 𝑑𝑡.

The first integral is straightforward:∫
0.73

0.47

1 𝑑𝑡 = 0.26.

For the second integral, we need to compute:∫
0.73

0.47

cos(2𝜋𝑡) 𝑑𝑡.
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The antiderivative of cos(2𝜋𝑡) is
1

2𝜋 sin(2𝜋𝑡). Evaluating this from

𝑡 = 0.47 to 𝑡 = 0.73:

1

2𝜋
(sin(2𝜋 × 0.73) − sin(2𝜋 × 0.47)) .

Using a calculator, we find:

sin(2𝜋 × 0.73) ≈ −0.5878, sin(2𝜋 × 0.47) ≈ 0.5878.

Therefore:∫
0.73

0.47

cos(2𝜋𝑡) 𝑑𝑡 = 1

2𝜋
(−0.5878 − 0.5878) = −1.1756

2𝜋
.

Now, putting everything together, we find:

Average summer temperature =
1

0.26

(
57.5 × 0.26 − 22.5 × −1.1756

2𝜋

)
.

Using 𝜋 ≈ 3.1416, this simplifies to:

Average summer temperature ≈ 57.5 − 4.21 = 53.29
◦
F.
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Figure A.1: Trajectories for the differential

equation ¤𝑥 = 𝑒−𝑡 sin 𝑥.

A.6 Differential Equations

Exercise 6.1 (a) ¤𝑥 = 4𝑥2 − 16

▶ Rewrite the equation: ¤𝑥 = 4(𝑥2 − 4) = 4(𝑥 − 2)(𝑥 + 2).
▶ Fixed points: 𝑥 = 2 and 𝑥 = −2.

▶ Stability: 𝑥 = −2 is stable, and 𝑥 = 2 is unstable.

▶ Graph of 𝑥(𝑡): If 𝑥0 < 2 then the trajectories approach 2, and

if 𝑥0 > 2 they diverge to ∞.

(b) ¤𝑥 = 1 − 𝑥14

▶ Fixed points: 𝑥 = ±1.

▶ Stability: 𝑥 = −1 is unstable, 𝑥 = 1 is stable.

▶ Graph of 𝑥(𝑡): If 𝑥0 > −1 then the trajectories approach 1, and

if 𝑥0 < −1 they diverge to ∞.

(c) ¤𝑥 = 𝑥 − 𝑥3

▶ Rewrite the equation: ¤𝑥 = 𝑥(1 − 𝑥2) = 𝑥(1 − 𝑥)(1 + 𝑥).
▶ Fixed points: 𝑥 = −1, 𝑥 = 0, and 𝑥 = 1.

▶ Stability: 𝑥 = −1 and 𝑥 = 1 are stable, while 𝑥 = 0 is unstable.

▶ Graph of 𝑥(𝑡): If 𝑥0 < 0 the system approaches −1, whereas if

𝑥0 > 0 the system approaches 1.

(d) ¤𝑥 = 𝑒−𝑡 sin 𝑥

▶ Fixed points: 𝑥 = 𝑛𝜋 for integers 𝑛.

▶ Stability: Here ¤𝑥 = 𝑓 (𝑥, 𝑡) and the stability comes from 𝜕 𝑓 /𝜕𝑥
the partial derivative of 𝑓 with respect to 𝑥 considering 𝑡 a

constant. Since 𝑒−𝑡 > 0 for all 𝑡, the stability of the system is

the same as that of ¤𝑥 = sin 𝑥.

▶ Graph of 𝑥(𝑡): Because 𝑒−𝑡 decays so quickly, even though

the only fixed points are 𝑥∗ = 𝑘𝜋 for 𝑘 ∈ ℤ, the trajectories

remain very close to the initial condition for long periods of

time (see Figure A.1).

(e) ¤𝑥 = 1 + cos 𝑥

▶ Fixed points: 𝑥 = 𝜋 + 2𝑛𝜋 for integers 𝑛.

▶ Stability: The fixed points are all “mixed”: the derivative is

positive to both sides, which means that initial conditions

starting below the fixed points tend towards it, while those

starting above it are driven away from it.

▶ Graph of 𝑥(𝑡): The derivative is always non-negative, which

means that 𝑥(𝑡) is always growing. Initial conditions between

𝜋+2𝑛𝜋 and𝜋+2(𝑛+1)𝜋will grow towards 𝑥∗ = 𝜋+2(𝑛+1)𝜋.

(f) ¤𝑥 = 1 − 𝑒cos 𝑥

▶ Fixed points: 𝑥 = 𝜋
2
+ 𝑛𝜋 for integers 𝑛.

▶ Stability: If 𝑛 is odd in the set of fixed points above, the point

is stable. Otherwise, it is unstable.

▶ Graph of 𝑥(𝑡): for 𝑛 odd, all initial conditions between
𝜋
2
+

(𝑛 − 1)𝜋 and
𝜋
2
+ (𝑛 + 1)𝜋 tend toward

𝜋
2
+ 𝑛𝜋.

(g) ¤𝑥 = 𝑒𝑥 − cos 𝑥

▶ Fixed points: Fixed points occur where 𝑒𝑥 = cos 𝑥. The exact

values of 𝑥 cannot be found explicitly, but graphically we see



A Solutions to Exercises 165

there are infinitely many points between −∞ and 0, as 𝑒𝑥 is

between 0 and 1 in this interval, and cos 𝑥 crosses the 𝑥 axis

infinitely many times.

▶ Stability: Stability can be assessed qualitatively by observing

the slopes of 𝑒𝑥 and cos 𝑥.

▶ Graph of 𝑥(𝑡): similar to the previous case.

Exercise 6.2 (a) Here we show how to obtain the given formula (you

don’t have to do this! but in case you’re interested in how to do it).

Dividing both sides by 𝑚, we get:

𝑑𝑣

𝑑𝑡
= 𝑔 − 𝑘

𝑚
𝑣2.

This is a separable differential equation, so we can write:

𝑑𝑣/𝑑𝑡
𝑔 − 𝑘

𝑚 𝑣
2

= 1.

We can decompose the fraction in the left-hand side into partial

fractions as follows:

1

𝑔 − 𝑘
𝑚 𝑣

2

=
1

2

√
𝑔


1√

𝑘
𝑚 𝑣 +

√
𝑔

− 1√
𝑘
𝑚 𝑣 −

√
𝑔


=

1

2

√
𝑚𝑘

𝑔


1√

𝑚𝑔

𝑘 + 𝑣
+ 1√

𝑚𝑔

𝑘 − 𝑣

 .
Writing 𝑐 =

√
𝑚𝑔

𝑘 , we can express the left-hand side as:∫
𝑑𝑣/𝑑𝑡
𝑔 − 𝑘

𝑚 𝑣
2

=
𝑐

2𝑔
log

(
𝑐 + 𝑣
𝑐 − 𝑣

)
.

The right-hand side is just 𝑡, so we have:

𝑐

2𝑔
log

(
𝑐 + 𝑣
𝑐 − 𝑣

)
= 𝑡 + 𝐶.

Using the initial condition 𝑣(0) = 0, we can solve for 𝐶:

𝑐

2𝑔
log

(
𝑐

𝑐

)
= 0 ⇒ 𝐶 = 0.

Thus, the solution becomes:

𝑐

2𝑔
log

(
𝑐 + 𝑣
𝑐 − 𝑣

)
= 𝑡.

Multiplying both sides by 2𝑔/𝑐 and exponentiating, we get

𝑐 + 𝑣
𝑐 − 𝑣 = 𝑒2𝑔𝑡/𝑐 =⇒ 𝑐 + 𝑣 = 𝑒2𝑔𝑡/𝑐𝑐 − 𝑒2𝑔𝑡/𝑐𝑣
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Figure A.3: Trajectories for the differential

equation ¤𝑥 = 𝑘1𝑎𝑥 − 𝑘−1𝑥
2
.

Solving for 𝑣(𝑡), we obtain:

𝑣(𝑡) = 𝑐
1 − 𝑒−2𝑔𝑡/𝑐

1 + 𝑒−2𝑔𝑡/𝑐 =

√
𝑚𝑔

𝑘

1 − 𝑒−2

√
𝑔𝑘/𝑚𝑡

1 + 𝑒−2

√
𝑔𝑘/𝑚𝑡

.

To find the terminal velocity, we take the limit as 𝑡 → ∞ of 𝑣(𝑡).
Since exp(−2

√
𝑔𝑘

𝑚 𝑡) → 0 as 𝑡 → ∞, we have:

𝑣∞ = lim

𝑡→∞
𝑣(𝑡) =

√
𝑚𝑔

𝑘
.

Thus, the terminal velocity is 𝑣∞ =

√
𝑚𝑔

𝑘 .

(b) As we can see in Figure A.2, ¤𝑣 = 0 only when 𝑣∗ =
√

𝑚𝑔

𝑘 , the only

fixed point of the dynamics. If 𝑣 > 𝑣∗ then ¤𝑣 < 0, and if 𝑣 < 𝑣∗,
then ¤𝑣 > 0, so this makes 𝑣∗ a stable fixed point.

0 1 2 3 4 5

v

15

10

5

0

5

10

dv dt

Figure A.2: Phase protrait of the differen-

tial equation ¤𝑣 = 𝑔 − 𝑘/𝑚𝑣2
, showing the

stable fixed point 𝑣 =

√
𝑚𝑔

𝑘
.

Exercise 6.3 (a) The fixed points satisfy 𝑥(𝑘1𝑎 − 𝑘−1𝑥) = 0 and there-

fore we have 𝑥∗
1
= 0 and 𝑥∗

2
= 𝑎𝑘−1/𝑘−1. It is not hard to see that 𝑥∗

1

is unstable and 𝑥∗
2

is stable (this system is mathematically identical

to the logistic equation).

(b) The trajectories can be seen in Figure A.3. They are very similar to

those in the logistic equation (Figure 6.4).

Exercise 6.4 (a) 𝑎 is the growth rate of the cancer, and 𝑏 is the inverse

of the carrying capacity.

(b) There are two fixed points: 𝑁 ∗
1
= 0 and 𝑁 ∗

2
= 1/𝑏. The trajectories

are very similar to those shown in Figure A.3.

(c) If 𝑓 (𝑁) = −𝑎𝑁 log(𝑏𝑁) then 𝑓 ′(𝑁) = −𝑎(1+ log(𝑏𝑁)). The deriva-

tive does not exist when 𝑁 =, but it’s clear that lim𝑁→0 𝑓
′(𝑁) > 0

and so𝑁 = 0 is an unstable fixed point. However, 𝑓 ′(1/𝑏) = −𝑎 < 0

and so 𝑁 = 1/𝑏 is a stable fixed point.

Exercise 6.5 (a) The equation is a parabola with a maximum at an

intermediate 𝑁 provided that 𝑎, 𝑏, 𝑟 > 0. If 𝑟 > 𝑎𝑏2
the intercept is
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positive, which means growth is always positive. If 𝑟 < 𝑎𝑏2
then

the intercept is negative, which means that for some 𝑁 growth will

be negative.

(b) There are three fixed points: 𝑁 ∗
1
= 0, 𝑁 ∗

2
= 𝑏 −

√
𝑟/𝑎 and 𝑁 ∗

3
=

𝑏 +
√
𝑟/𝑎. The derivative of 𝑓 (𝑁) = 𝑁(𝑟 − 𝑎(𝑁 − 𝑏)2) is

𝑓 ′(𝑁) = 𝑟 − 𝑎𝑏2 + 4𝑎𝑏𝑁 − 3𝑎𝑁2.,

We have

𝑓 ′(𝑁 ∗
1
) = 𝑟 − 𝑎𝑏2 ,

𝑓 ′(𝑁 ∗
2
) = −2

√
𝑟
(√
𝑟 − 𝑏

√
𝑎
)
= −2

√
𝑟
𝑟 − 𝑎𝑏2

√
𝑟 + 𝑏

√
𝑎
,

𝑓 ′(𝑁 ∗
3
) = −2

√
𝑟
(√
𝑟 + 2𝑏

√
𝑎
)
< 0.

Note that 𝑓 ′(𝑁 ∗
3
) is always negative (and hence the point is always

stable), but the behavior of the other two points changes whether

𝑟 > 𝑎𝑏2
or 𝑟 < 𝑎𝑏2

. In the first case, the growth at 𝑁 = 0 is positive

(check 𝑓 (𝑁)) and we have that 𝑁 ∗
1

is unstable and 𝑁 ∗
2

is stable, but

note that 𝑁 ∗
2
< 0 in this case and therefore it will never be reached

if 𝑁(0) > 0, which is the realistic scenario. This is called “weak”

Allee effect. In this case, the trajectories are very similar to those

in the logistic equation, only that the growth when 𝑁 is small is

slower.

However, if 𝑟 < 𝑎𝑏2
, then the growth when 𝑁 = 0 is negative. 𝑁 ∗

1

becomes stable and 𝑁 ∗
2

(which is now positive) turns unstable. In

this case, the trajectories are very different depending on the initial

conditions: if 𝑁(0) < 𝑁 ∗
2
, then the population becomes extinct,

whereas if𝑁(0) > 𝑁 ∗
2
, the population reaches the carrying capacity.

This is called a “strong” Allee effect.

The two cases are shown in Figure A.4.

0 2 4 6 8 10

t
0.5

0.0

0.5

1.0

1.5

2.0

2.5

N
(t)

weak Allee affect

0 2 4 6 8 10

t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
(t)

strong Allee affect

Figure A.4: Trajectories for the differential

equation
¤𝑁 = 𝑁(𝑟 − 𝑎(𝑁 − 𝑏)2), with 𝑟 =

1, 𝑎 = 0.5, 𝑏 = 1 (left, weak Allee effect)

and 𝑟 = 1, 𝑎 = 0.5, 𝑏 = 2 (right, strong

Allee effect).

Exercise 6.6 (a) Two fixed points, 𝑥 = 0 and 𝑥 = 1. The derivatibe of

𝑓 (𝑥) is 𝑓 ′(𝑥) = 1 − 2𝑥 which is positive for 𝑥 = 0 and negative for

𝑥 = 1.

(b) Two fixed points, 𝑥 = 0 and 𝑥 = 1/2. The derivatibe of 𝑓 (𝑥) is

𝑓 ′(𝑥) = −1 + 4𝑥 which is negative for 𝑥 = 0 and positive for

𝑥 = 1/2.

(c) Infinite fixed points at 𝑥 = 𝑘𝜋, with 𝑘 ∈ ℤ. However, 𝑓 ′(𝑥) =

1 + tan
2 𝑥 > 0 and so every point is unstable.
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(d) Three fixed points, at 𝑥 = 0 and 𝑥 = ±
√

6. The derivative of 𝑓 (𝑥)
is 𝑓 ′(𝑥) = 12𝑥 − 4𝑥3

which is 0 at 𝑥 = 0, positive at −
√

6 (unstable

fixed point) and negative at 𝑥 =
√

6 (stable fixed point). Graphical

analysis shows that 𝑥 = 0 is a mixed fixed point: trajectories starting

between −
√

6 and 0 are drawn towards 0, whereas trajectories

starting at 𝑥 > 0 are drawn towards

√
6.

(e) One fixed point at 𝑥 = 0. The derivative of 𝑓 (𝑥) is 𝑓 ′(𝑥) = 𝑒−𝑥 ,
which is positive at 𝑥 = 0.

(f) One fixed point at 𝑥 = 1, the derivative of 𝑓 (𝑥) is 𝑓 ′(𝑥) = 1/𝑥,

which is positive at 𝑥 = 1.

(g) If 𝑎 > 0, there are three fixed points: 𝑥 = 0, 𝑥 = ±
√
𝑎. The derivative

of 𝑓 (𝑥) is 𝑓 ′(𝑥) = 𝑎 − 3𝑥2
, which is positive at 𝑥 = 0 and negative at

both 𝑥 = ±
√
𝑎 (stable fixed points). If 𝑎 = 0 there is only one fixed

point at 𝑥 = 0. The derivative is zero at that point, but a graphical

analysis shows that it is a stable point. Finally, if 𝑎 < 0 there is only

one fixed point at 𝑥 = 0 but now the derivative 𝑓 ′(𝑥) = 𝑎 − 3𝑥2
is

negative at 𝑥 = 0, and so the point is stable.
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A.7 Linear Functions of Several Variables

Exercise 7.1 Since x = (𝑥1 , 𝑥2) = 𝑥1e1+𝑥2e2, we have (because𝑇 is linear)

that

𝑇(x) = 𝑇(𝑥1e1+𝑥2e2) = 𝑥1𝑇(e1)+𝑥2𝑇(e2) = 𝑥1

(
2

5

)
+𝑥2

(
−1

6

)
=

(
2𝑥1 − 𝑥2

5𝑥1 + 6𝑥2

)
In particular,

𝑇(5, 3) =
(

7

43

)
Exercise 7.2 We will write the computations on the augmented matrix.

1. (
2 1 6

1 −4 −4

)
∼

(
1 −4 −4

2 1 6

)
∼

(
1 −4 −4

0 9 14

)
∼

(
1 −4 −4

0 1
14

9

)
∼

(
1 0

20

9

0 1
14

9

)
Thus, 𝑥 = 20/9 and 𝑦 = 14/9.

2. (
5 2 8

−1 3 9

)
∼

(
1 −3 −9

0 17 53

)
∼

(
1 0

6

17

0 1
53

17

)
Thus, 𝑥 = 6/17 and 𝑦 = 53/17.

3. (
1 −2 1 3

2 −3 1 8

)
∼

(
1 −2 1 3

0 1 −1 2

)
∼

(
1 0 −1 7

0 1 −1 2

)
Thus, 𝑥 = 7 + 𝑧, 𝑦 = 2 + 𝑧, and 𝑧 is free.

4. ©­«
2 −1 3

1 −1 4

1 −3 1

ª®¬ ∼ ©­«
1 −1 4

0 1 −2

0 −2 −3

ª®¬ ∼ ©­«
1 −1 4

0 1 −2

0 0 1

ª®¬
This system is inconsistent, as the last row implies 0 = 1, so there

is no solution.

5.

©­«
1 1 −1

2 −1 7

1 −2 8

ª®¬ ∼ ©­«
1 1 −1

0 −3 9

0 −3 9

ª®¬ ∼ ©­«
1 1 −1

0 1 −3

0 0 0

ª®¬ ∼ ©­«
1 0 2

0 1 −3

0 0 0

ª®¬
Thus, 𝑥 = 2 and 𝑦 = −3.

6.

©­«
2 −4 1 −1

1 2 −3 −9

3 2 2 4

ª®¬ ∼ ©­«
1 2 −3 −9

0 −8 7 17

0 4 −11 −31

ª®¬ ∼ ©­«
1 2 −3 −9

0 4 −11 −31

0 0 1 3

ª®¬ ∼ ©­«
1 0 0 −1

0 1 0 1/2

0 0 1 3

ª®¬
Thus, 𝑥 = −1, 𝑦 = 1/2 and 𝑧 = 3.

7.

©­«
5 −1 2 6

1 2 −1 −1

3 2 −2 1

ª®¬ ∼ ©­«
1 2 −1 −1

0 −11 7 11

0 1 −1 −1

ª®¬ ∼ ©­«
1 2 −1 −1

0 1 −1 −1

0 0 1 0

ª®¬ ∼ ©­«
1 0 0 1

0 1 0 −1

0 0 1 0

ª®¬
Thus, 𝑥 = 1, 𝑦 = −1 and 𝑧 = 0.
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Exercise 7.3 1.(
1 3 4 7

3 9 7 6

)
∼

(
1 3 4 7

0 0 1 3

)
∼

(
1 3 0 −5

0 0 1 3

)
Thus, 𝑥 = −5 − 3𝑦, 𝑦 is free, and 𝑧 = 3.

2. (
1 4 0 7

2 7 0 10

)
∼

(
1 4 0 7

0 1 0 4

)
∼

(
1 0 0 −9

0 1 0 4

)
Thus, 𝑥 = −9, 𝑦 = 4 and 𝑧 is free.

3. (
0 1 −6 5

1 −2 7 −6

)
∼

(
1 0 −5 4

0 1 −6 5

)
Thus, 𝑥 = 4 + 5𝑧, 𝑦 = 5 + 6𝑧 and 𝑧 is free.

4. (
1 −2 −1 3

3 −6 −2 2

)
∼

(
1 −2 −1 3

0 0 0 −7

)
and the system is inconsistent.

5. ©­«
3 −4 2 0

−9 12 −6 0

−6 8 −4 1

ª®¬ ∼ ©­«
3 −4 2 0

0 0 1 0

0 0 0 1

ª®¬
and the system is inconsistent.

6. ©­­­«
1 −3 0 −1 0 −2

0 1 0 0 −4 −1

0 0 0 1 9 4

0 0 0 0 1 0

ª®®®¬ ∼
©­­­«
1 0 0 0 0 −1

0 1 0 0 0 −1

0 0 0 1 0 4

0 0 0 0 1 0

ª®®®¬
thus 𝑥1 = −1, 𝑥2 = −1, 𝑥3 is free, 𝑥4 = 4 and 𝑥5 = 0.

7. ©­­­«
1 0 2 6

0 1 0 4

0 0 1 9

0 0 0 0

ª®®®¬ ∼
©­­­«
1 0 0 −3

0 1 0 4

0 0 1 9

0 0 0 0

ª®®®¬
Thus 𝑥 = −3, 𝑦 = 4 and 𝑧 = 9.

8. ©­­­«
1 2 −5 −6 0 −5

0 1 −6 −3 0 2

0 0 0 0 1 0

0 0 0 0 0 0

ª®®®¬ ∼
©­­­«
1 0 7 0 0 −9

0 1 −6 −3 0 2

0 0 0 0 1 0

0 0 0 0 0 0

ª®®®¬
Thus 𝑥1 = − − 9 − 7𝑥3, 𝑥2 = 2 + 6𝑥3 + 3𝑥4, 𝑥3 and 𝑥4 are free, and

𝑥5 = 0.

Exercise 7.4 1. The augmented matrix of the system is(
2 3 ℎ

4 6 7

)
∼

(
2 3 ℎ

0 0 7 − 2ℎ

)
,

and therefore the system is consistent if ℎ = 7/2.

2. The augmented matrix of the system is(
1 −3 −2

5 ℎ −7

)
∼

(
1 −3 −2

0 ℎ + 15 3

)
,
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and therefore the system is consistent if ℎ ≠ −15.

Exercise 7.5 1. The augmented matrix of the system is(
1 ℎ 2

4 8 𝑘

)
∼

(
1 ℎ 2

0 8 − 4𝑘 𝑘 − 8

)
.

If ℎ ≠ 2, the system has a unique solution. If ℎ = 2 but 𝑘 ≠ 8, the

system has no solution. Finally, if ℎ = 2 and 𝑘 = 8, the system has

infinite solutions.

2. The augmented matrix of the system is(
1 3 2

3 ℎ 𝑘

)
∼

(
1 3 2

0 ℎ − 9𝑘 𝑘 − 6

)
.

If ℎ ≠ 9, the system has a unique solution. If ℎ = 9 but 𝑘 ≠ 6, the

system has no solution. Finally, if ℎ = 9 and 𝑘 = 6, the system has

infinite solutions.

Exercise 7.6 1. The system is{
𝑥1 + 𝑥2 = 3

4𝑥1 + 5𝑥2 = 8

whose augmented matrix is(
1 1 3

4 5 8

)
∼

(
1 1 3

0 1 −4

)
∼

(
1 0 7

0 1 −4

)
,

and the solution is (7, 4).
2. The system is 

𝑥1 − 2𝑥2 = −1

𝑥1 + 3𝑥2 = 4

3𝑥1 − 2𝑥2 = 9

whose augmented matrix is

©­«
1 −2 −1

1 3 4

3 −2 9

ª®¬ ∼ ©­«
1 −2 −1

0 1 1

0 1 3

ª®¬ ©­«
1 −2 −1

0 1 1

0 0 2

ª®¬
and the system has no solution.
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A.8 Matrix Algebra

Exercise 8.1 The standard matrix of 𝑇 is(
1 4 5

3 7 4

)

Exercise 8.2 1. −2𝐴 =

(
−4 0 2

−8 10 −4

)
2. 𝐵 − 2𝐴 =

(
3 −5 3

−7 6 −7

)
3. 𝐴𝐶 can’t be computed, since 𝐴 is a 2 × 3 matrix and 𝐶 is 2 × 2. The

dimensions don’t match.

4. 𝐶𝐷 =

(
1 13

−7 −6

)
5. 𝐴 + 2𝐵 =

(
16 −10 1

6 −13 −4

)
6. 3𝐶 − 𝐸 can’t be computed, since 3𝐶 is a 2 × 2 matrix and 𝐸 is 2 × 1.

7. 𝐶𝐵 =

(
9 −13 −5

−13 6 −5

)
8. 𝐸𝐵 can’t be computed since 𝐸 is a 2 × 1 matrix and 𝐵 is 2 × 3.

Exercise 8.3 We have

𝐴𝐵 =

(
23 −10 + 5𝑘

−9 15 + 𝑘

)
𝐵𝐴 =

(
23 15

6 − 3𝑘 15 + 𝑘

)
,

so 𝑘 must satisfy the two equations{
−10 + 5𝑘 = 15

6 − 3𝑘 = −9

=⇒
{

5𝑘 = 25

3𝑘 = 15

which has as unique solution 𝑘 = 5.

Exercise 8.4 We have

𝐴𝐵 =

(
1 −7

−2 14

)
𝐴𝐶 =

(
1 −7

−2 14

)
.

The equality appears because det𝐴 = 0 and so there are infinite vectors

that satisfy 𝐴x =

(
1

−2

)
and infinite vectors that satisfy 𝐴x =

(
−7

14

)
.

Exercise 8.5 1.

(
= 2 −3

−5/2 4

)
2.

(
= −2 1

7/2 −3/2

)
3.

(
= 1 1

−7/5 −8/5

)
4.

(
= −2 1

−7/4 3/4

)
Exercise 8.6 If det𝐴 ≠ 0, the system 𝐴x = b has as unique solution

x = 𝐴−1b. In these cases,
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1. 𝑥 =

(
= 2 −3

−5/2 4

) (
2

1

)
=

(
1

−1

)
2. Here we need to multiply the second equation by−1, so that the coef-

ficient matrix is the same as in exercise 8.4.1. 𝑥 =

(
= 1 1

−7/5 −8/5

) (
9

−11

)
=(

−2

5

)
Exercise 8.7 1. det

(
𝑐 𝑑

𝑎 𝑏

)
= 𝑐𝑏 − 𝑎𝑑 = −det𝐴, which means that

exchanging two rows changes the signs of the determinant.

2. det

(
𝑎 + 𝑘𝑐 𝑏 + 𝑘𝑑
𝑐 𝑑

)
= 𝑎𝑑 − 𝑏𝑐 = det𝐴, which means that substi-

tuting one row by a linear combination of rows from the matrix

doesn’t change the determinant.

3. det

(
𝑎 𝑏

𝑘𝑐 𝑘𝑑

)
= 𝑘𝑎𝑑 − 𝑘𝑏𝑐 = 𝑘 det𝐴, which means that scaling a

row by a number 𝑘 multiplies the determinant by 𝑘 too.

Exercise 8.8 The area of the parallelogram 𝑂𝐴𝐵𝐶 is equal to the area of

the rectangle with vertices at 𝑂 and 𝐵 (with sides 𝑎 + 𝑏 and 𝑐 + 𝑑) minus

the area of the two rectangles with sides 𝑏 and 𝑐 (check that the two

squares are identical), minus the area of the two identical right triangles

with sides 𝑎 and 𝑐 (one below the paralellogram and one above it), and

minus the area of the two identical right triangles with sides 𝑏 and 𝑑 (one

to the left of the parallelogram, one to its right). Summing everything:

Area = (𝑎 + 𝑏)(𝑐 + 𝑑) − 2𝑏𝑐 − 2

1

2

𝑎𝑐 − 2

1

2

𝑏𝑑 = 𝑎𝑑 − 𝑏𝑐.

Exercise 8.9 We can do this in two ways.

1. The first is to calculate𝐴b1 =

(
−21

12

)
and𝐴b2 =

(
−27

16

)
and calculate

the are of the paralellogram formed by these two vectors:����−21 −27

12 16

���� = −21 · 16 + 12 · 27 = 3 · 4 · (−7 · 4 + 9 · 3) = −12.

2. The other one is to calculate the area of 𝑆����−2 −2

3 5

���� = −10 + 6 = −4,

and then calculate the determinant of 𝐴, which will give us the

expansion of the area of 𝑆:

det𝐴 =

����6 −3

−3 2

���� = 3.

So

Area of 𝑆(𝐴) = det𝐴 · Area of 𝑆 = −12.

We have kept the signs in order to make clear that both approaches are

identical, but since we are being asked about an area, the answer is 12.
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Exercise 8.10 We have

𝐴𝐵 =

(
7 40

−5 26

)
=⇒ det𝐴𝐵 = 18.

On the other hand,

det𝐴 = 9, det 𝐵 = 2 =⇒ det𝐴det 𝐵 = 18 = det𝐴𝐵.

If we think of 𝐴 and 𝐵 as the matrices of two linear transformations, the

change in area caused by the action of first 𝐵 and then 𝐴 (or vice versa)

is the same as that caused by the composition 𝐴𝐵.

Exercise 8.11 We can write(
2 5 1 0

1 3 0 1

)
∼

(
1 0 3 −5

0 1 −1 2

)
,

and so 𝐴−1 =

(
3 −5

−1 2

)
.
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A.9 Eigenvalues and Eigenvectors

Exercise 9.1 1. 𝜆1 = 2,𝜆2 = −1, v1 =

(
1

0

)
, v2 =

(
1

−1

)
2. 𝜆1 = 0,𝜆2 = −3, v1 =

(
3

1

)
, v2 =

(
0

1

)
3. 𝜆1 = +3,𝜆2 = −3, v1 =

(
1

2

)
, v2 =

(
1

−1

)
4. 𝜆1 = 2,𝜆2 = −1, v1 =

(
1

−1

)
, v2 =

(
1

2

)
Exercise 9.2 1. The characteristic equation is𝜆2−(𝑎+𝑑)𝜆+(𝑎𝑑−𝑏𝑐) =

0. Since tr 𝐴 = 𝑎 + 𝑑 and 𝑒𝑡𝐴 = 𝑎𝑑 − 𝑏𝑐, the identity of the two

expressions is immediate.

2. Expanding the product, we obtain 𝜆2 −(𝜆1 +𝜆2)𝜆+𝜆1𝜆2 = 0, from

which we derive the result.

3. We have 𝜆1 = tr 𝐴 − 𝜆2 and so tr 𝐴𝜆2 − 𝜆2

2
= det𝐴. Solving this

quadratic equation yields the result.

Exercise 9.3 1. 𝜆1 = −1,𝜆2 = 2, v1 =

(
1

0

)
, v2 =

(
1

−3

)
2. The system

(
1

−3

)
= 𝑎

(
1

0

)
+𝑏

(
1

−3

)
has as unique solution 𝑎 = 2, 𝑏 =

−1.

3. Since 𝐴x = 𝐴(𝑎v1 + 𝑏v2) = 𝑎𝜆1v1 + 𝑏𝜆2v2 and, in this case, 𝑎 =

2, 𝑏 = −1, we have

𝐴20x = 2(−1)20v1 + 2
20v2 =

(
2 + 2

20

−3 · 2
20

)
=

(
−1048574

−3145728

)
.

Exercise 9.4 The eigenvalues and eigenvectors of 𝐴 are 𝜆1 = −1,𝜆2 =

1, v1 =

(
1

−1

)
, v2 =

(
0

1

)
.

The vector x =

(
2

0

)
can be expressed as a linear combination of the two

eigenvectors (you need to solve the 2 × 2 system of equations) as follows:

x = 2v1 + 2v2.

Hence, we have

𝐴15

(
2

0

)
= 2𝜆15

1
v1 + 2𝜆15

2
v2 = −2

(
1

−1

)
+ 2

(
0

1

)
=

(
−2

4

)
.

Exercise 9.5 1. The terms in the sequence are 0, 1, 1, 2, 3, 5, 8, 13, . . .

2. Since 𝐴𝑛+1 = 𝐴𝑛 + 𝑌𝑛 , we can substitute 𝑌𝑛 = 𝐴𝑛−1 to obtain

𝐴𝑛+1 = 𝐴𝑛 + 𝐴𝑛−1 or, making 𝑘 = 𝑛 − 1, 𝐴𝑘+2 = 𝐴𝑘+1 + 𝐴𝑘 .
3. The eigenvalues are 𝜆1 = (1 +

√
5)/2 and 𝜆2 = (1 −

√
5)/2. The first

number is called the golden number, or 𝜙. The second number is

actually equal to 1 − 𝜙 or −𝜙−1
. The corresponding eigenvectors

are v1 =

(
1

𝜙

)
and v2 =

(
−𝜙
1

)
.
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4. Since

(
𝑌0

𝐴0

)
=

(
1

0

)
= 𝑎

(
1

𝜙

)
+ 𝑏

(
−𝜙
1

)
, we can solve the system to

obtain 𝑎 = 1

1+𝜙2
and 𝑏 = − 𝜙

1+𝜙2
or, operating, 𝑎 = 2/(5 +

√
5), 𝑏 =

−1/(1 +
√

5). In any case,(
𝑌𝑛
𝐴𝑛

)
=

𝜙𝑛

1 + 𝜙2

(
1

𝜙

)
+

(−1)𝑛𝜙−𝑛−1

1 + 𝜙2

(
−𝜙
1

)
.

5. The second eigenvalue 1 −
√

5/2 is smaller than 1 in absolute value:

|𝜆2| < 1. This means that, raised to a high power 𝑛, it becomes

more and more small and closer to zero. For instance, 𝜆10

2
≈ 0.008

and 𝜆20

2
≈ 0.00006, whereas 𝜆20

1
≈ 15, 127. This means that, for

large 𝑛, we can actually disregard the term with 𝜆𝑛
2

and therefore(
𝑌𝑛
𝐴𝑛

)
≈

𝜙𝑛

1 + 𝜙2

(
1

𝜙

)
.

In particular, this means that the fraction 𝐴𝑛/𝑌𝑛 ≈ 𝜙 when 𝑛 → ∞.

In terms of the Fibonacci sequence, this means that the fractions

between two consecutive Fibonacci numbers approaches 𝜙 as 𝑛

becomes large.

Exercise 9.6 The eigenvalues of the Leslie matrix are 𝜆1 = −0.1, 𝜆2 = 1.5

with corresponding eigenvectors v1 =

(
1

−0.3

)
, v2 =

(
2

1

)
. As in the

previous exercises, we have(
𝐼𝑡
𝑀𝑡

)
= 𝑎(−0.1)𝑡

(
1

−0.3

)
+ 𝑏(1.5)𝑡

(
2

1

)
≈ 𝑏(1.5)𝑡

(
2

1

)
.

Now, this means that the fraction 𝐼𝑡/𝑀𝑡 ≈ 2 as 𝑡 → ∞, and since the

eigenvector is being multiplied by a factor (1.5)𝑡 , the total poppulation

will keep growing without end.

Exercise 9.7 1. The eigenvalues of the transition matrix are 𝜆1 = 1.02,

𝜆2 = 0.58 with corresponding eigenvectors v1 =

(
10

13

)
, v2 =

(
5

1

)
.

2. As in the previous exercises, we have x𝑘 = 𝑎(1.02)𝑘
(
10

13

)
+𝑏(0.58)𝑘

(
5

1

)
.

3. As before, the term (0.58)𝑘 → 0 as 𝑘 → ∞, so x𝑘 ≈ 𝑎(1.02)𝑘
(
10

13

)
as

𝑘 becomes large. This means that the population will keep grwoing

(albeit very slowly) with a stable fraction of owls and rats.

Exercise 9.8 1. 𝐷 =

(
2 0

0 1

)
, 𝑃 =

(
3 4

1 1

)
.

2. 𝐷 =

(
𝑎 0

0 𝑏

)
, 𝑃 =

(
1 0

3 1

)
.

Exercise 9.9 1. 𝐴2 = 𝑃𝐷𝑃−1𝑃𝐷𝑃−1 = 𝑃𝐷2𝑃−1
,𝐴3 = 𝐴2𝐴 = 𝑃𝐷2𝑃−1𝑃𝐷𝑃−1 =

𝑃𝐷3𝑃−1
and so forth.

2. For part 1 we have

𝐴10 =

(
3 4

1 1

) (
2

10
0

0 1

) (
−1 4

1 −3

)
=

(
−3 · 2

10 + 4 3 · 2
12 − 12

−2
10 + 1 2

12 − 3

)
,
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and for part 2:

𝐴10 =

(
1 0

3 1

) (
𝑎 0

0 𝑏

) (
1 0

−3 1

)
=

(
𝑎10

0

3(𝑎10 − 𝑏10) 𝑏10

)
.
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A.10 Complex Numbers

Exercise 10.1 We multiply each side of the equation by 𝑥 − 𝑖5, and

perform complex numbers multiplication:

43+𝑖𝑦 = (4+𝑖3)(𝑥−𝑖5) ⇐⇒ 43+𝑖𝑦 = 4𝑥−𝑖20+𝑖3𝑥+15 ⇐⇒ 43+𝑖𝑦 = (4𝑥+15)+(3𝑥−20)𝑖

Because the real and imaginary parts of both sides must be equal, we

have the linear system

4𝑥 = 28

3𝑥 − 𝑦 = 20

which has as unique solution 𝑥 = 7, 𝑦 = 1.

Exercise 10.2

(1) (2 − 𝑖)3 = (2 − 𝑖)(2 − 𝑖)(2 − 𝑖) = (3 − 4𝑖)(2 − 𝑖) = 6 − 3𝑖 − 8𝑖 − 4 = 2 − 11𝑖

(2) 𝑖13 = 𝑖12+1 = 𝑖(𝑖4)3 = 𝑖

(3)

1

𝑖
=
𝑖

𝑖2
= −𝑖

(4)

1

1 + 2𝑖
=

1 − 2𝑖

(1 + 2𝑖)(1 − 2𝑖) =
1 − 2𝑖

5

=
1

5

− 2

5

𝑖

(5)

1 + 𝑖
𝑖 − 1

=
(1 + 𝑖)(−1 − 𝑖)
(−1 + 𝑖)(−1 − 𝑖) =

−2𝑖

2

= −𝑖

(6) 𝑖 + 𝑖2 + 𝑖3 + 𝑖4 = 𝑖 + (−1) + (−1)𝑖 + (−1)2 = 0

Exercise 10.3

𝑧 =

(
𝑎 + 𝑏𝑖
𝑎 − 𝑏𝑖

)
2

+
(
𝑎 − 𝑏𝑖
𝑎 + 𝑏𝑖

)
2

=

(
(𝑎 + 𝑏𝑖)2
𝑎2 + 𝑏2

)
2

+
(
(𝑎 − 𝑏𝑖)2
𝑎2 + 𝑏2

)
2

=
(𝑎 + 𝑏𝑖)4 + (𝑎 − 𝑏𝑖)4

(𝑎2 + 𝑏2)2 = 2

𝑎4 + 𝑏4 − 6𝑎2𝑏2

(𝑎2 + 𝑏2)2 .

As we can see, 𝑧 is a real number, and therefore 𝑧̄ = 𝑧.

Exercise 10.4

(1) 𝑤 = 𝑧 + 3𝑖 = (Re 𝑧) + (Im 𝑧 + 3)𝑖 =⇒ Re 𝑤 = Re 𝑧, Im 𝑤 = Im 𝑧 + 3

(2) 𝑤 = 𝑖𝑧 = (−Im 𝑧) + (Re 𝑧)𝑖 =⇒ Re 𝑤 = −Im 𝑧, Im 𝑤 = Re 𝑧

(3) 𝑤 = (1 + 𝑧)(𝑧̄ + 1) = (𝑧̄ + 1 + |𝑧|2 + 𝑧) = 1 + |𝑧|2 + 2Re 𝑧

=⇒ Re 𝑤 = 1 + |𝑧|2 + 2Re 𝑧, Im 𝑤 = 0
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Exercise 10.5
(1) | − 𝑖| =

√
(−1)2 = 1

(2) |1 + 𝑖| =
√

1
2 + 1

2 =
√

2

(3) |1 − 𝑖| = |1 + 𝑖| =
√

2

(4) |(1 + 𝑖)2| = |1 + 𝑖|2 = 2

(5)

����� 1

1 + 𝑖

����� = 1

|1 + 𝑖| =
1√
2

=

√
2

2

(6)

����� 1

(1 − 𝑖)2

����� = 1

|1 − 𝑖|2 =
1

2

(7) |1 −
√

3𝑖| =
√

1
2 + (

√
3)2 = 2

Exercise 10.6

(1) Arg 1 + 𝑖 = tan
−1

(
Im 1 + 𝑖
Re 1 + 𝑖

)
= tan

−1(1) = 𝜋
4

(2) Arg (1 + 𝑖)−1 = Arg 1 − Arg 1 + 𝑖 = −𝜋
4

(3) Arg (1 + 𝑖)2 = 2Arg 1 + 𝑖 = 𝜋
2

(4) Arg (1 + 𝑖)3 = 3Arg 1 + 𝑖 = 3𝜋
4

Exercise 10.7

(1) 𝑒
𝜋
4
𝑖 − 𝑒− 𝜋

4
𝑖 =

(
cos(𝜋/4) + 𝑖 sin(𝜋/4)

)
−

(
cos(−𝜋/4) + 𝑖 sin(−𝜋/4)

)
=

=

(
cos(𝜋/4) − cos(−𝜋/4)

)
+ 𝑖

(
sin(𝜋/4) − sin(−𝜋/4)

)
= 2 sin(𝜋/4)𝑖 =

√
2𝑖

(2)

1 − 𝑒 𝜋
2
𝑖

1 + 𝑒 𝜋
2
𝑖
=

1 − 𝑖
1 + 𝑖 =

(1 − 𝑖)2
2

=
−2𝑖

2

= −𝑖

(3) 𝑒𝜋𝑖(1 − 𝑒− 𝜋
3
𝑖) = −(1 − (cos(−𝜋/3) + 𝑖 sin(−𝜋/3))) = −1

2

−
√

3

2

𝑖

Exercise 10.8

(1) | − 𝑖| = 1, Arg −𝑖 = −𝜋
2

=⇒ −𝑖 = 𝑒−𝑖𝜋/2

(2) |1 + 𝑖| =
√

2, Arg 1 + 𝑖 = 𝜋
4

=⇒ 1 + 𝑖 =
√

2𝑒 𝑖𝜋/4

(3) |1 − 𝑖| =
√

2, Arg 1 − 𝑖 = −𝜋
4

=⇒ 1 − 𝑖 =
√

2𝑒−𝑖𝜋/4

(4) |(1 + 𝑖)2| = 2, Arg (1 + 𝑖)2 =
𝜋
2

=⇒ (1 + 𝑖)2 = 2𝑒 𝑖𝜋/2

(5)

����� 1

1 + 𝑖

����� = √
2

2

,Arg (1 + 𝑖)−1 = −𝜋
4

=⇒ 1

1 + 𝑖 =
√

2

2

𝑒−𝑖𝜋/4

(6)

����� 1

(1 − 𝑖)2

����� = 1

2

,Arg (1 − 𝑖)−2 =
𝜋
2

=⇒ 1

(1 − 𝑖)2 =
1

2

𝑒 𝑖𝜋/2

(7) |1 −
√

3𝑖| = 2, Arg 1 −
√

3𝑖 = tan
−1(−

√
3) = − 𝑝𝑖

3

=⇒ 1 −
√

3𝑖 = 2𝑒−𝑖𝜋/3
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Exercise 10.9 1.

cos 3𝜃 + 𝑖 sin 3𝜃 = 𝑒 𝑖3𝜃 = (𝑒 𝑖𝜃)3

= (cos𝜃 + 𝑖 sin𝜃)3

= (o̧𝑠3𝜃 − 3 cos𝜃 sin
2 𝜃) + 𝑖(3 cos

2 𝜃 sin𝜃 − sin
3 𝜃),

2. Using the hint:

2
4

cos
4 𝜃 = (𝑒 𝑖𝜃 + 𝑒−𝑖𝜃)4

= 𝑒 𝑖4𝜃 + 4𝑒 𝑖2𝜃 + 6 + 4𝑒−𝑖2𝜃 + 𝑒−𝑖4𝜃

= 2 cos 4𝜃 + 8 cos 2𝜃 + 6.

Exercise 10.10 The relationship between Fourier series and complex

numbers comes from Euler’s formula. Since

𝑒 𝑖𝜃 = cos𝜃 + 𝑖 sin𝜃 and 𝑒−𝑖𝜃 = cos𝜃 − 𝑖 sin𝜃,

we can express cosine and sine terms in terms of complex exponentials:

cos

(
𝑛𝜋𝑥
𝐿

)
=
𝑒 𝑖𝑛

𝜋𝑥
𝐿 + 𝑒−𝑖𝑛 𝜋𝑥

𝐿

2

,

sin

(
𝑛𝜋𝑥
𝐿

)
=
𝑒 𝑖𝑛

𝜋𝑥
𝐿 − 𝑒−𝑖𝑛 𝜋𝑥

𝐿

2𝑖
.

These equalities suggest that we could have chosen to expand 𝑓 (𝑥) in

terms of 𝑒 𝑖𝑛𝑥 :

𝑓 (𝑥) =
∞∑

𝑛=−∞
𝑐𝑛𝑒

𝑖𝑛 𝜋𝑥
𝐿 ,

The coefficients in the complex formulation 𝑐𝑛 relate to 𝑎𝑛 and 𝑏𝑛 as

follows:

𝑐𝑛 =
𝑎𝑛 − 𝑖𝑏𝑛

2

for 𝑛 > 0,

𝑐−𝑛 =
𝑎𝑛 + 𝑖𝑏𝑛

2

.

or, in general:

𝑐𝑛 =
1

2𝐿

∫ 𝐿

−𝐿
𝑓 (𝑥)𝑒−𝑖𝑛 𝜋𝑥

𝐿 𝑑𝑥.

Exercise 10.11 1. The eigenvalues are

√
3± 𝑖. The action of the matrix

is equivalent to multiplying by the complex number 𝑧 =
√

3 + 𝑖,
which in turn can be decomposed into a pure rotation of angle 𝜋/6,

𝑒 𝑖𝜋/6 =

√
3

2
+ 𝑖 1

2
and a scaling by a factor 2.

2. The eigenvalues are 1±2𝑖. But the matrix is not in the form

(
1 −2

2 1

)
,

so

the action of the original matrix is a rotation composed with a

different transformation that scales two lines differently.

3. The eigenvalues are 5/2± 𝑖
√

23/2. As in the previous example, this

matrix is not in the form

(
5/2

√
23/2

−
√

23/2 5/2

)
. We can also see that

(
3 3

−2 2

)
=

(
3 0

0 2

) (
1 1

−1 1

)
,
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where the last matrix has eigenvalues 𝜆 = 1 ± 𝑖. So we could

understand this transformation as a rotation of angle 𝜋/4 times a

linear transformation that triples the 𝑥 axis and doubles the 𝑦 axis.

This descomposition is not unique. In Linear Algebra textbooks

you can find a standard decomposition of matrices with complex

eigenvalues, but we will not see it here.

4. The eigenvalues are

√
2

2
±

√
2

2
𝑖, which is a pure rotation of angle 𝜋/4.

Exercise 10.12

(1) 𝑧 = (−𝑖)1/2 ⇐⇒ 𝑧2 = −𝑖 ⇐⇒ 𝑧2 = 𝑒−𝑖𝜋/2+2𝜋𝑘 , 𝑘 ∈ ℤ ⇐⇒ 𝑧 = 𝑒−𝑖𝜋/4+𝜋𝑘

=⇒ 𝑧1 = 𝑒−𝑖𝜋/4 , 𝑧2 = 𝑒 𝑖3𝜋/4

(2) 𝑧 =

(
− 1

2

−
√

3

2

𝑖

)
1/2

⇐⇒ 𝑧2 = 𝑒−2𝜋/3+2𝜋𝑘 , 𝑘 ∈ ℤ ⇐⇒ 𝑧 = 𝑒−𝜋/3+𝜋𝑘

=⇒ 𝑧1 = 𝑒−𝜋/3+𝜋𝑘 , 𝑧2 = 𝑒2𝜋/3+𝜋𝑘

(3) 𝑧 = (−1)1/4 ⇐⇒ 𝑧4 = 𝑒 𝑖𝜋+2𝜋𝑘 𝑘 ∈ ℤ ⇐⇒ 𝑧 = 𝑒 𝑖𝜋/4+𝑘𝜋/2

=⇒ 𝑧1 = 𝑒−𝑖3𝜋/4 , 𝑧2 = 𝑒−𝑖𝜋/4 , 𝑧3 = 𝑒 𝑖𝜋/4 , 𝑧4 = 𝑒 𝑖3𝜋/4

(4) 𝑧 = 1
1/6 ⇐⇒ 𝑧6 = 𝑒 𝑖2𝜋𝑘 , 𝑘 ∈ ℤ ⇐⇒ 𝑧 = 𝑒 𝑖𝜋𝑘/3

=⇒ 𝑧1 = 𝑒−𝑖2𝜋/3 , 𝑧2 = 𝑒−𝑖𝜋/3 , 𝑧3 = 1, 𝑧4 = 𝑒 𝑖𝜋/3 , 𝑧5 = 𝑒 𝑖2𝜋/3 , 𝑧6 = −1
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A.11 Systems of Linear Differential Equations

Exercise 11.1 1. The general solution is

x(𝑡) = 𝑐1𝑒
−2𝑡

(
−1

2

)
+ 𝑐2𝑒

−𝑡
(
−1

1

)
.

The fixed point is a stable node.

4 2 0 2 4
x

4

2

0

2

4

y

2. The general solution falls outside the scope of this course, as

the matrix has only one eigenvalue 𝜆 = 1 and one eigenvector

v = (2, 1). The fixed point is an unstable degenerate node, with

only one eigenvector. For more on degenerate nodes, see Exercise

11.7.
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10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

y

3. The general solution is

x(𝑡) = 𝑐1𝑒
3𝑖𝑡

(
−5 − 3𝑖

17

)
+ 𝑐2𝑒

−3𝑖𝑡

(
−5 + 3𝑖

17

)
.

The fixed point is a center.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

20

15

10

5

0

5

10

15

20

y

4. The general solution is

x(𝑡) = 𝑐1𝑒
−2𝑡

(
1

2

)
+ 𝑐2

(
3

4

)
.
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There are infinite fixed points, all of them neutrally stable.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

20

15

10

5

0

5

10

15

20

y

5. The general solution is

x(𝑡) = 𝑐1𝑒
(2+𝑖)𝑡

(
−3 − 𝑖

1

)
+ 𝑐2𝑒

(2−𝑖)𝑡
(
−3 + 𝑖

1

)
.

The fixed point is an unstable spiral.

200 150 100 50 0 50 100 150 200
x

100

75

50

25

0

25

50

75

100

y
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6. The general solution is

x(𝑡) = 𝑐1𝑒
−4𝑡

(
−2

1

)
+ 𝑐2𝑒

−𝑡
(
−1

1

)
.

The fixed point is a stable node.
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7. The general solution is

x(𝑡) = 𝑐1𝑒
−𝑡

(
2

1

)
+ 𝑐2𝑒

𝑡

(
1

1

)
.

The fixed point is a saddle node.
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8. The general solution falls outside of the scope of this course: the

matrix has only one eigenvalue 𝜆 = −1 with one eigenvector

v = (−1, 1). The fixed point is a stable degenerate node. For more

on degenerate nodes, see Exercise 11.7.
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Exercise 11.2 There are two imaginary eigenvalues, 𝜆1,2 = ±𝑖
√
𝑎𝑏 which

makes the origin a center. The trajectories will oscillate around the origin:

if Romeo startes loving Juliet (in the first quadrant), she starts hating

him, and the trajectories go downward. Then, Romeo will become more

indifferent towards Juliet, and trajectories will turn to the left. At some
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point, Romeo’s indifference will trigger Juliet’s love, making the trajectory

turn upward. Finally, As Juliet now loves him, Romeo will start loving

her back, turning the trajectory to the right.
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Exercise 11.3 1. The eigenvalues are 𝜆1,2 = −1 ± 𝑏, with correspond-

ing eigenvectors v1 = (1, 1) and v2 = (−1, 1), so the behavior of the

system will depend on whether 𝑎 > 𝑏 (stable node), 𝑎 = 𝑏 (infinite

line of stable nodes) or 𝑎 < 𝑏 (saddle node).

2. The eigenvalues are 𝜆1,2 = 1/2 ±
√

3/2𝑖, so the fixed point is an

unstable spiral.
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3. There are two different real eigenvalues±
√
𝑏𝑐 and so the fixed point

is a saddle point. Depending on the initial conditions, Romeo and

Juliet’s love for each other will either go to infinity, or to minusn

infinity (if the initial love is below a given threshold).
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Exercise 11.4 There are two eigenvalues,−𝑘1 and 0, and the corresponding

eigenvectors are v1 = (1,−1) and v2 = (0, 1). So the general solution is

x(𝑡) = 𝑐1𝑒
−𝑘1𝑡

(
1

−1

)
+ 𝑐2

(
0

1

)
=

(
𝑐1𝑒

−𝑘1𝑡

𝑐2 − 𝑐1𝑒
−𝑘1𝑡

)
.
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We could have also solved this system directly, as 𝑥1(𝑡) = 𝑐1𝑒
−𝑘1𝑡

from

the first equation, and then we can integrate ¤𝑥2(𝑡) = 𝑐1𝑘1𝑒
−𝑘1𝑡

to 𝑥2(𝑡) =
𝑐2 − 𝑐1𝑒

−𝑘1𝑡 .

Since 𝑥1(0) = 𝐾, 𝑥2(0) = 0, then we can substitute in the general solution

to obtain 𝑐1 = 𝐾, 𝑐2 = −𝐾.

Exercise 11.5 Writing the system as{
¤𝑥 = 𝑣

¤𝑣 = −𝜔2𝑥

where 𝜔2 = 𝑘/𝑚, we see that there are two complex eigenvalues, ±𝑖𝜔,

with corresponding eigenvectors v1,2 = (∓𝑖 , 𝜔). We can write the solution

in terms of the complex eigenvalues and operate, or we can remember

that, in this case,

x(𝑡) = 𝑐1Re (𝑒 𝑖𝜔𝑡v1) + 𝑐2Im (𝑒 𝑖𝜔𝑡v1 = 𝑐1

(
sin 𝜔𝑡
𝜔 cos 𝜔𝑡

)
+ 𝑐2

(
− cos 𝜔𝑡
𝜔 sin 𝜔𝑡

)
.

Since 𝑥(0) = 0, 𝑣(0) = 1, we have 𝑐1 = 1/𝜔, 𝑐2 = 0 and therefore

x(𝑡) = 𝑐1

©­«
1

𝜔 sin 𝜔𝑡

𝑐𝑜𝑠𝜔𝑡

ª®¬ =⇒ 𝑥(𝑡) = 1

𝜔
sin 𝜔𝑡.

Exercise 11.6 1. Since ¤𝑥1 + ¤𝑥2 = 0 it must be that 𝑥1(𝑡) + 𝑥2(𝑡) = 𝐴, a

constant. This makes sense, since it measures the total area of the

forest, which remains constant.

2. Since 𝑥1(0)+𝑥2(0) = 20, then it is always the case that 𝑥1(𝑡)+𝑥2(𝑡) =
20, and so 𝑥2(𝑡) = 20− 𝑥1(𝑡), which substituted in the first equation

yields ¤𝑥1 = 2 − 0.3𝑥1.

3. The eigenvalues of the system are 𝜆1 = 0 and 𝜆2 = −0.3, with cor-

responding eigenvectors v1 = (1, 2) and v2 = (−1, 1). The general

solution is then

x(𝑡) = 𝑐1

(
1

2

)
+ 𝑐2𝑒

−0.3𝑡

(
−1

1

)
.

Since 𝑥1(0) = 2, 𝑥2(0) = 18, we have 𝑐1 = 20/3, 𝑐2 = 14/3 and so

x(𝑡) = 1

3

(
20 − 14𝑒−0.3𝑡

40 + 14𝑒−0.3𝑡

)
,

and as 𝑡 → ∞ the forest reaches a stable equilibrium (20/3, 40/3).

Exercise 11.7 1. Here all vectors in the plane are eigenvectors, and

the trajectories are paralell to the initial conditions for all time.
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2. This is a case of a degenerate unstable node. There is only one

eigenvector (1, 0).
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From Strogatz:

A good way to think about the degenerate node is to

imagine that it has been created by deforming an or-

dinary node. The ordinary node has two independent

eigendirections; all trajectories are parallel to the slow

eigendirection as 𝑡 → ∞, and to the fast eigendirection

as 𝑡 → −∞.

Now suppose we start changing the parameters of the

system in such a way that the two eigendirections
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are scissored together. Then some of the trajectories

will get squashed in the collapsing region between the

two eigendirections, while the surviving trajectories get

pulled around to form the degenerate node. . Another

way to get intuition about this case is to realize that the

degenerate node is on the borderline between a spiral

and a node. The trajectories are trying to wind around

in a spiral, but they don’t quite make it.
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A.12 Systems of Nonlinear Differential
Equations

Exercise 12.1 1. The fixed points are (0, 0), (0, 4/5), (1/2, 0), (1/2, 3/10).
The Jacobian matrix is

𝐷f(𝑥, 𝑦) =
(
1 − 4𝑥 0

−5𝑦 4 − 5𝑥 − 10𝑦

)
.

Now, for each fixed point:

▶ 𝐷f(0, 0) =

(
1 0

0 4

)
, so 𝜆1 = 1,𝜆2 = 4 and the origin is an

unstable node.

▶ 𝐷f(0, 4/5) =
(

1 0

−4 −4

)
, so 𝜆1 = 1,𝜆2 = −4 and the equilib-

rium is a saddle point.

▶ 𝐷f(1/2, 0) =
(
−2 0

0 3/2

)
, so 𝜆1 = −2,𝜆2 = 3/2 and the equi-

librium is a saddle point.

▶ 𝐷f(1/2, 3/10) =

(
−2 0

−15/10 −3/2

)
, so 𝜆1 = −2,𝜆2 = −3/2

and the equilibrium is a stable node.
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2. The fixed points are (0, 0), (0, 1/2), 𝑎𝑛𝑑(2, 0). The Jacobian matrix

is

𝐷f(𝑥, 𝑦) =
(
2 − 2𝑥 − 2𝑦 −2𝑥

−𝑦 1 − 4𝑦 − 𝑥

)
.

Now, for each fixed point:

▶ 𝐷f(0, 0) =

(
2 0

0 1

)
, so 𝜆1 = 2,𝜆2 = 1 and the origin is an

unstable node.

▶ 𝐷f(0, 1/2) =
(

1 0

−1/2 −1

)
, so 𝜆1 = 1,𝜆2 = −1 and the equi-

librium is a saddle point.
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▶ 𝐷f(2, 0) =
(
−2 −4

0 −1

)
, so 𝜆1 = −2,𝜆2 = −1 and the equilib-

rium is a stable node.
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3. The fixed points are (0, 0), (0, 1), (1, 0), (1/2, 1). The Jacobian matrix

is

𝐷f(𝑥, 𝑦) =
(
4 − 8𝑥 − 2𝑦 −2𝑥

0 1 − 2𝑦

)
.

Now, for each fixed point:

▶ 𝐷f(0, 0) =

(
4 0

0 1

)
, so 𝜆1 = 1,𝜆2 = 4 and the origin is an

unstable node.

▶ 𝐷f(0, 1) =
(
2 0

0 −1

)
, so 𝜆1 = 2,𝜆2 = −1 and the equilibrium

is a saddle point.

▶ 𝐷f(1, 0) =
(
−4 −2

0 1

)
, so𝜆1 = −4,𝜆2 = 1 and the equilibrium

is a saddle point.

▶ 𝐷f(1/2, 1) =
(
−2 −1

0 −1

)
, so 𝜆1 = −2,𝜆2 = −1 and the equilib-

rium is a stable node.
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4. The fixed points are (0, 0), 𝑎𝑛𝑑(2,−2). The Jacobian matrix is

𝐷f(𝑥, 𝑦) =
(
𝑦 𝑥 − 2

1 1

)
.

Now, for each fixed point:

▶ 𝐷f(0, 0) =
(
0 −2

1 1

)
, so 𝜆1,2 = 1

2
±

√
7

2
𝑖 , and the origin is an

unstable spiral.

▶ 𝐷f(2,−2) =
(
−2 0

1 1

)
, so𝜆1 = −2,𝜆2 = 1 and the equilibrium

is a saddle point.
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Exercise 12.2 There are three fixed points: (0, 0) and (𝑎,±
√
𝑎). The

Jacobian matrix is

𝐷f(𝑥, 𝑦) =
(
𝑦 𝑥 − 𝑎
−1 2𝑦

)
.
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Now, for each fixed point:

▶ 𝐷f(0, 0) =
(

0 −𝑎
−1 0

)
, so 𝜆1 =

√
𝑎 and 𝜆2 = −

√
𝑎 and the origin is

a saddle point.

▶ 𝐷f(𝑎,
√
𝑎) =

(√
𝑎 0

−1 2

√
𝑎

)
, so 𝜆1 =

√
𝑎,𝜆2 = 2

√
𝑎 and the equilib-

rium is an unstable node.

▶ 𝐷f(𝑎,−
√
𝑎) =

(
−
√
𝑎 0

−1 −2

√
𝑎

)
, so 𝜆1 = −

√
𝑎,𝜆2 = −2

√
𝑎 and the

equilibrium is an unstable node.
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Exercise 12.3 There are four fixed points: (0, 0), (0, 5), (5, 0) and (10/3, 10/3).
The Jacobian matrix is

𝐷f(𝑥, 𝑦) =
(
10 − 4𝑥 − 𝑦 −𝑥

−𝑦 10 − 𝑥 − 4𝑦

)
.

Now, for each fixed point:

▶ 𝐷f(0, 0) =
(
10 0

0 10

)
, so 𝜆1 = 10 and 𝜆2 = 10 and the origin is an

unstable node.

▶ 𝐷f(0, 5) =
(

5 0

−5 −10

)
, so 𝜆1 = 5,𝜆2 = −10 and the equilibrium is

a saddle node.

▶ 𝐷f(5, 0) =
(
−10 −5

0 5

)
, so 𝜆1 = −10,𝜆2 = 5 and the equilibrium is

a saddle node.

▶ 𝐷f(10/3, 10/3) =
(
−20/3 10/3

10/3 −20/3

)
, so 𝜆1 = −10,𝜆2 = −10/3 and

the equilibrium is a stable node.
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Exercise 12.4 In all cases the Jacobian matrix is

𝐷f(𝑁1 , 𝑁2) =
(
1 − 2𝑁1 − 𝑎12𝑁2 −𝑎12𝑁1

−𝑎21𝑁2 1 − 2𝑁2 − 𝑎21𝑁1

)
.

In all cases we have three fixed points: (0, 0), (1, 0), (0, 1) whose Jacobian

matrices are:

▶ 𝐷f(0, 0) =
(
1 0

0 1

)
, so the origin is always unstable.

▶ 𝐷f(1, 0) =
(
−1 −𝑎12

0 1 − 𝑎21

)
, so this equilibrium will be stable or a

saddle point (unstable) depending n the value of 𝑎21.

▶ 𝐷f(0, 1) =
(
1 − 𝑎12 0

−𝑎21 −1

)
, so this equilibrium will be stable or a

saddle point (unstable) depending n the value of 𝑎12.

There is a fourth fixed point

(
1 − 𝑎12

1 − 𝑎12𝑎21

,
1 − 𝑎21

1 − 𝑎12𝑎21

)
which is positive

(and therefore of interest to us in this population model) if 𝑎12 < 1 and

𝑎21 < 1 (case 3), or if 𝑎21 > 1 and 𝑎12 > 1 (case 4).

1. The fourth fixed point does not matter here. Since 𝑎12 < 1 and

𝑎21 > 1, the point (1, 0) is stable and the point (0, 1) is unstable. So

all trajectories go to (1, 0): species 1 outcompetes species 2.

2. The fourth fixed point does not matter here. Since 𝑎12 > 1 and

𝑎21 < 1, the point (1, 0) is unstable and the point (0, 1) is stable. So

all trajectories go to (0, 1): species 2 outcompetes species 1.

3. Since both 𝑎12 < 1 and 𝑎21 < 1, both (1, 0) and (0, 1) are saddle

points and the fourth fixed point (10/14, 10/14) is stable, since
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its Jacobian matrix is

(
−10/14 −4/14

−4/14 −10/14

)
with eigenvalues 𝜆1 =

−1 and 𝜆2 = −3/7. All trajectories go to (10/14, 10/14): there is

coexistence of both species.

4. Since both 𝑎12 > 1 and 𝑎21 > 1, both (1, 0) and (0, 1) are saddle

points and the fourth fixed point (1/3, 1/3) is a saddle point, since

its Jacobian matrix is

(
−1/3 −2/3

−2/3 −1/3

)
with eigenvalues 𝜆1 = −1 and

𝜆2 = 1/3. Trajectories go either to (1, 0) or to (0, 1) depending on

the initial conditions.
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Exercise 12.5 1. The two fixed points are (0, 0) and (1, 5).
2. The Jacobian matrix is

𝐷 𝑎𝑡ℎ𝑏 𝑓 𝑓 (𝑁, 𝑃) =
(
5 − 𝑃 −𝑁
𝑃 𝑁 − 1

)
.

For (0, 0) the eigenvalues are 𝜆1 = 5 and 𝜆2 = −1, so the origin is a

saddle point.

3. For (1, 5) the eigenvalues are ±
√

5, which suggest a center where

the trajectories oscillate around the point depending on the initial

conditions. This is what happens:
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Exercise 12.6 Since we want −𝑉(𝑉 − 3/5)(𝑉 − 1) and 𝑉/𝑐 to intersect,

we need to equate the two curves:

−𝑉(𝑉 − 3/5)(𝑉 − 1) = 𝑉

𝑐
.

Since 𝑉 = 0, 𝑤 = 0 is always an intersecting point, we can divide by 𝑉

and we end with the quadratic equation

𝑉 ∗ ∗2 − 8

5

𝑉 + 3

5

+ 1

𝑐
= 0 =⇒ 𝑉 =

4 ±
√

𝑐−25

𝑐

5

.

Since we want this equation to at least have one solution, 𝑐 ≥ 25. In

particular, the minimal value of 𝑐 that creates a new intersection (at

𝑥 = 4/5) is 𝑐 = 25.
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