mathematics for neuroscience

pablo catalan

ucdm | Universidad Carlos lll de Madrid

Departamento de Matematicas



mathematics for neuroscience

pablo catalan



Copyright

E®®O®This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License. For more details, visit:
https://creativecommons.org/licenses/by-nc-sa/4.0/

Colophon
This document was typeset with the help of KOMA-Script and I£TgX using the kaobook
class.

Unpublished
First edition 2024
Second edition 2025

Cover image
"Splendid Working (Functioning Arises from a Pure Heart)”, calligraphy by Keido Fukushima
(1933-2011).


https://creativecommons.org/licenses/by-nc-sa/4.0/
https://sourceforge.net/projects/koma-script/
https://www.latex-project.org/
https://github.com/fmarotta/kaobook/

Contents

Contents

Introduction

ParT I. DIFFERENTIAL AND INTEGRAL CALCULUS

1 Functions
11 AnIntroductionto Functions . . . . .. ... .. ... ... .. ......
12 Operations with functions . . . . ... ...... ... .. ... .. ...,
Algebraicoperations . . . . ... ... L L Lo L o
Compositions. . . . . ... ... .. e
Inverses . . . . . . ..
1.3 Elementary Functions . . . . . ... ... ... .. ... .. .. ......
Polynomials . . ... .. ... ... .. ... .
Rational functions . . . . .. .. .. ... .. L
Trigonometric functions . . . . . ... ... ... .. . o L oL
Exponential . . . . . ... ... ...
Logarithm . . . ... ... ... ... ... .. ... ..
14 Limitofafunction . . ... ... ... .. ... ... ... ... ...,
15 Continuity . .. ... ... ... .
Discontinuities . . . . . . .. .. ... L
Exercises . . . . . . . ..

2 Derivatives

21 Conceptand definition . . ... ... ... ... .. ... ... . ...
2.2 Introduction to Differential Equations . . . . . .. ... ... ... ... ..
2.3 Algebraic properties of derivatives . . . . . . ... ... ... L.
Exercises . . ... ... ... ..

3 Taylor Expansions

3.1 Taylor Polynomial . . ... ... ... ... ... .. ... ... ....
3.2 Taylorseries . . .. .. .. ... ... ...
3.3 Numerical approximations . . . ... ... ... ... ... .. .. .. ..
Exercises . . ... ... .. ...

4 Local Behavior of Functions
41 Local Extrema . . . . . . . . . . . . . e

iii

16
16
18
19
21

23
23
25
27
29

30



42 Convexityand Concavity . . ... ... ... .. ... ..........
43 Functiongraphing . . .. .. ... ... ... .. ... ... ... ... ..
Exercises . . . . . . ...
Integration
51 The DefiniteIntegral . . . . .. . ... ... ... .. ... .. .. .. ...
Geometric interpretation of theintegral . . . . . . .. ... ... ... ...
5.2 Properties of theintegral . . . . ... ... ... .. .. ... .. .. ..
5.3 The Fundamental Theorem of Calculus . . . . . ... ............
5.4 Applicationsof theintegral . . . . .. ... ... ... ... ... .. ..
Cumulativechange . . . ... ......... ... .. ... .. ..
AVerages . . ... ...
Exercises . . . . ... ...
Differential Equations
6.1 Exponential Growth . . . ... ... ... ... . o oo L
6.2 A Geometric Way of Thinking . . . . ... ... ... ............
6.3 Fixed Points and Stability . . . ... .... ... .. .. ..... .. ....
6.4 Population Growth . ... ... ... ... ... .. ... .. .. .. ...
6.5 Linear Stability Analysis . . . . .. ... ... .. ... ... ... ...
Exercises . . ... ... .. ...

ParT II. LINEAR ALGEBRA

7

10

Linear Functions of Several Variables

7.1 Linear Transformations . . . . . . . . . . . . ... .. ...
7.2 Solutions of Linear Equations . . . .. ... .. .. ... ..........
7.3 Matrix Notation for Systems of Linear Equations . . . . . .. ... ... ..
7.4 Gaussian Elimination . . . . . . . ... ... ... .. .. .
Exercises . . . . . .. e e

Matrix Algebra

8.1 Matrix Notation for Linear Transformations . . . .. ... ... ......

8.2 Operations withmatrices . . . . ... ... ... ... ... ... .. ..
Matrix sum . . . . . ... e e e e
Matrix Multiplication . . . . . ... ... ... .. o L oo

8.3 Determinants . . . . . . . . . .. e e e e

8.4 InverseofaMatrix . . . . . . . . . ...

Exercises . . . . . . . e e

Eigenvalues and Eigenvectors

9.1 Eigenvalues and Eigenvectors . . . ... ... ... ... ..........
92 PowersofaMatrix . . . .. ... ... L L
Exercises . . . . . .. ..

Complex Numbers

10.1 Introduction to Complex Numbers. . . . ... ... .. ... .. ... ....

10.2 Terminology and Notation . . . . ... ... .. .. ... .. ........

10.3 Geometric interpretation of complex multiplication . . . . . .. ... ...

104 Euler'sFormula . ... ... ... .. ... ... ... . ... ... . ...
Proof of Euler’s formula using power series . . . . .. .. ... .......

41
41
43
43
44
47
47
48
50

53
53
54
56
57
58
60

62

63
63
64
66
66
70

72
72
75
75
75
77
78
80

82
83
85
88



10.5 Complex Multiplication as Matrix Multiplication . . . ... .. ... ...
Exercises . . . . .. . ... .. e

ParT III. SysTEMs OF DiFrereNTIAL EQUATIONS

11

12

Systems of Linear Differential Equations

111 Definitionsand Examples . . . . . .. ... ... .. ... .. ... ... .

112 Solving Linear Systems . . . . . .. ... ... ... ... ..........

11.3 Equilibria and Stability . . . . ... ... ... ... .. ... .. ..

11.4 Classification of Fixed Points . . . . . ... ... ... .. ..........
Different real eigenvalues . . . . . . ... .. ... .. ... .. ... .. ..
Complex eigenvalues . . . . ... ...... ... ... .. .. ... ...,

Exercises . . . . . . ...

Systems of Nonlinear Differential Equations

121 Introduction . . . . . .. ... ...
12.2 Stability of fixed points . . . . . .. ... Lo
12.3 Graphical Analysis of Nonlinear Systems . . . . ... ... ... ......
12.4 Fitzhugh-Nagumo ModelofaNeuron . . ... .. ... ... ... ... ..
Exercises . . . . . .. ..

APPENDIX

A

Solutions to Exercises

Al Functions . . .. ... ... ..
A2 Derivatives . . . . . ...
A3 Taylor Expansions . . . . ... ... .. ... .. ... ... .. ... .
A4 Local Behavior of Functions . . . ... ... .................
A.5 Fundamental Theorem of Calculus . . . ... ... ... ..........
A.6 Differential Equations . . . . .. ... ... ... .. o o L L
A7 Linear Functions of Several Variables . . .. .. .. ... ..........
A8 MatrixAlgebra . . . . .. ... ... L
A9 Eigenvalues and Eigenvectors . . . ... ... ... ... ..........
A10 ComplexNumbers . . . . .. ... ... ... ... .. ..
Al Systems of Linear Differential Equations . . . . ... ... ... ......
A.12 Systems of Nonlinear Differential Equations . . . . .. ... ... ... ..

97

98
98
99
100
101
101
101
103

105
105
106
108
109

111






Introduction

This course is an introduction to Mathematics for students in the Neu-
roscience Degree. The range and depth of math that could be taught
in this course is very wide, so I will try to focus on those concepts that
will be most useful for the degree. Therefore, the course will cover basic
differential and integral calculus, linear algebra and differential equations,
with a focus on these from the perspective of dynamical systems, which
I believe will be most useful for students dealing with nonlinear models.
Many more topics could be included, but time is (sadly) limited. If, after
reading this book, you realize a newfound love for mathematics, please
keep studying them.

For Chapters 1to 5 I have copied a lot of material from the book “Differ-
ential and Integral Calculus of a Single Variable” by my colleague and
mentor José A. Cuesta.

Chapter 6 is copied almost verbatim from Steven Strogatz’s excellent
“Nonlinear Dynamics and Chaos”.

For the Linear Algebra chapters I have taken most of the material from
Lay, “Linear Algebra and its Applications”.

I took many examples and exercises from Claudia Neuhauser and Marcus
Roper’s “Calculus for Biology and Medicine” which, in fact, covers all
the sections in this course, and many more.

ChatGPT helped me format the excerpted parts of th books I wanted to
include into LaTeX.

I'm grateful to the students that pointed out inconsistencies and who
pointed out areas where the topics could be better explained. I hope to
keep improving the notes as time goes on.




PART I. DIFFERENTIAL AND
INTEGRAL CALCULUS



Functions

1.1 An Introduction to Functions

A mathematical function is a rule that assigns an element from a given set
to an element of another set. In other words, a function is a mathematical
object that returns an output when you hand it an input. The set of
possible inputs of a given function is called the domain and the set of
possible outputs is called the range or image! . The usual notation for
functions is y = f(x), where f represents the rule that assigns the output
y to the input x.

Let’s see how this works with a well-known function: f(x) = x2. What
is the domain of this function? If we don’t specify it, it could be many
things: the set of all matrices with positive numbers, or the set of all
complex numbers, or the set of all polynomials of fifth degree? .

In this course, we will work mostly with functions of real numbers,
which we denote with the letter R. The real numbers are very interesting
and if we had time we could talk about how very weird they are. But, for
our purposes, let’s just say that real numbers are those we can write in
decimal form, like 3.141592653 . .., 2.718281828. .., 1.618033988 . .. or
0.999999.. . .. Those real numbers that have a finite or periodic decimal
expression are called rational numbers, Q, because we can always
express them as a fraction. The rest are called irrational numbers and
their decimal expressions are only approximations to their true value.

We represent the real numbers on a line, going from —oo to oo, and
usually marking where 0 is, the separation between positive and negative
numbers.

When defined on the real numbers, the function f(x) = x? becomes a
real function from some domain D C R to the reals:

f:D—R

x—y=2x2 (-1
What is the set D? In other words, what are the valid inputs for x2? All
the real numbers, since the expression makes sense for them. Given any
number, positive or negative, x> returns its square. Now, this output is
always non-negative, and so the range of f(x) = x? is the non-negative
real line.

Example 1.1.1 Other examples of functions:

1. y = |x| represents the rule f(x) = |x| that maps each number x
to its absolute value.

2. The function
x2 x<2,
-]

-3 x>2,

1: Sometimes this is also called the
codomain, in case you see it in another
books.

2: If you don’t understand some of these
words, don’t worry, we'll see them as we
advance in the course.



maps all real numbers smaller than or equal to 2 to their square,
and those larger than 2 to their cube minus 3.

The usual way to represent functions is to plot their graph. For a function
f:AcA— R, weneed to draw this in a plane, where the horizontal
axis (the x axis) represents the input and the vertical axis (the y axis)
represents the output. For a given function, we need to plot every point
(x, f(x)) forall x € A.

If a function does not repeat outputs for two different inputs, we say
it is injective or one-to-one. For instance, f(x) = x + 5 is injective. But
f(x) = x* isn't. If a function is injective, the equation iy = f(x) has either
no solution or a unique solution.

On another hand, if a function covers all of the range (in these examples,
that means R) we say it is surjective or onto. Again, f(x) = x + 5 is
surjective, but f(x) = x? isn't.

If a function is both injective and surjective it is called bijective. A bijective
function is a perfect correspondence between to sets.

A function is even if f(—x) = f(x), and odd if f(—x) = —f(x).

A function is bounded if there exists M > 0 such that | f(x)| < M for all
X in its domain.

A function is monotonically increasing if for every x, y in its domain
such that x < y it satisfies f(x) < f(y), and is monotonically decreasing
if f(x) > f(y). We say it is monotonic strictly increasing/decreasing
if inequalities are strict. (Note that a constant is both monotonically
increasing and decreasing, but not strictly.)

1.2 Operations with functions

Algebraic operations

Let A, B C R and consider the two real functions

f:A—R g:B—R 12)
x —y=fx) x—y =g

With these two functions we can perform the following algebraic opera-
tions:

(i) Addition: If C = A N B —where both functions are defined—,

f+g:C—R 13)
x—y = flx)+g(x)
(ii) Product: If C = AN B,
fg:C—R 14)

x—y = fx)gx)

1 Functions
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(iii) Quotient: If C = AN B’, where B’ = {x € B : g(x) # 0},

flg:C—R

1.5
x —y = f)/3) (-5

For instance, if f(x) = x + 5 and g(x) = x?, the sum is a new function
h(x) = f(x) + g(x), in this case h(x) = x + x + 5. Similarly, we can do
this with products of functions and quotients.

Proposed Exercise 1.2.1 Give one example for product and quotient
of functions, and identify the corresponding domains and ranges.

Compositions

A more involved operation is the composition of two functions. It is

defined as

fog:C—R
1.6
x—y = f(g(x)) 4o

In this case, the domain is not so simple to obtain. For f o g to be defined
x must belong to B, for g(x) to be well defined, so C C B. But in order to
evaluate f(g(x)), the number g(x) € A. Therefore

C={xeB: g(x)ec A} (1.7)

Even if A and B are simple sets, C may be much more involved:.
Composition is a noncommutative operation, i.e.,, fo g # g o f.

It is, however, associative, i.e., f o (g o h) = (f o g) o h. We can thus
define multiple compositions, like f o gohow = f(g(h(w(x)))), without
ambiguity.

Inverses

We can introduce the identity function Id(x) = x. Given a function
f :A— R, its inverse would be a function ™! : f(A) — R such that
fof'=f"1of =1Id. Theidea is thatif f maps x to y, its inverse f !
maps y back to x.

Not all functions have an inverse that is defined all over their image f(A).

For an inverse to exist the equation x = f(y), for a given x € f(A), must
have a unique solution: in other words, f must be injective.

For those functions that are not injective in their domain A, we might be
able to define several inverses by constraining the domain to any subset
where they are made injective. Thus, noninjective functions may have
several inverses.

Example 1.2.1 Let f(x) = x2. Its domain is R, but this function is
not injective in its domain. However, we can constrain the domain to
be [0, c0). In that case f(x) is injective and we can obtain the inverse

1 Functions

5



function by finding the unique solution of the equation x = f(y) = y?,
where 0 < y. Clearly this solution is y = V/x, therefore, within [0, c),
the inverse of f is f~(x) = Vx.

Note that we might alternatively chosen the domain to be (-0, 0],
where the function f is again injective. However now the solution of
x = y?> withy < 0is y = —/x. So another inverse of f is f ~1(x) = —v/x.

The graph of f~!(x) can be obtained from that of f(x) as the mirror
image with respect to the line y = x.

Remark 1.2.1 BEWARE!! Never confuse f~!(x) with f(x)™! = 1/f(x),
the reciprocal of f. In the case f(x) = x + 5, its inverse f '(x) = x — 5,
whereas (f)~! = 1/(x +5).

1.3 Elementary Functions

Let’s introduce the most common functions used in nearly all mathemat-
ical problems, which we call elementary functions.

Polynomials

These are functions of the form

1

Py(x)=ayx" +a,1x" 7 + - +a1x +ay, (1.8)

where ax € Rforall k =0,1,...,n. The largest power, #, is called the
degree of the polynomial. Constants are polynomials of degree 0. Given
the operations that define them, the domain of any polynomial is R.

Rational functions

They are defined as quotients of two polynomials, namely

_ Py(x)
 Qulx)

The domain of both polynomials is R, but Q,,(x) may be zero at some
points, where the quotient will thus not be defined. Hence the domain of

fx)is{x € R : Qu(x) # 0}.

f(x) (1.9)

Trigonometric functions

The two basic trigonometric functions are the sine (sin x) and the cosine
(cos x). In terms of them we can define also the tangent and cotangent:
sin x Cos X 1

tanx = , cotx = — = . (1.10)
COs X sin x tanx

The geometric definition of these functions, based on the unit circle, is
described in Figure 1.1.

1 Functions



= tan(x)

0O(0;0) E:,= cos(x) S(1:0)

There are two more trigonometric functions, although less common than
the previous ones, namely the secant (sec x) and the cosecant (csc x):

1
secx = , ascx = —.
Cos X sin x

(1.11)

The graphs of sin x and cos x are plotted in Figure 1.2. Those of tan x and
cot x in Figure 1.3.

31, 5712 -2 -3 EU -2 [’} R B 3fi12 Zn 512 3

Given their geometric definitions, all these functions are related by
geometric identities. The main ones are listed in Table 1.1.

Example 1.3.1 Periodic functions, like the trigonometric ones, are
functions that “repeat” after some values. In mathematical terms,
f(x +¢) = f(x), and the smallest ¢ for which this is true is called the
period (what is the period of the sine and cosine?). They are clearly
not injective. Take sin x, for instance. However, an interval where it
is injective is [-7/2, /2], and so we can obtain the inverse of this

1 Functions 7

Figure 1.1: Geometric definition of sin x,
cos x, tan x, and cot x.

Figure 1.2: Plot of sin x and cos x.
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Trigonometric identities

cos?x +sinZx =1

cos(x £ y) =cosxcosy Fsinxsiny

sin(x £ y) =sinx cosy = cos x siny

COSX COsYy = %[cos(x —y) + cos(x + y)]

sinxsiny = 1[cos(x — y) — cos(x + )]

2

1+ tan? x = sec? x

function within this interval: the arc sine: sin™
might have taken the interval [7t/2, 37/2], for instance. In that case the
inverse would be different: sin™! x = 7 — arcsin x. Or in the interval
[37/2,5m/2] the inverse would be sin~! x = 27 + arcsin x.

Similarly, arccos x = cos™! x when the domain of cos x is taken to be
[0, 7], and arctan x = tan™! x when the domain of tan x is taken to be

(-m/2,1/2).

Exponential

This is the function defined as f(x) = e*. The constant e appearing in
this definition is the irrational number introduced by Euler

e = 2.71828182845904523536028747135266249775724709369995957 . . .

We will encounter the exponential in many of the problems we will
explore later in the course, especially those dealing with differential

equations.
The properties of the exponential are:

Its domain is R.
e¥ > 0forall x € R.

AR e

e =1.
(e¥)* = e forany a € R.
e*tY = e¥e¥.

x = arcsin x. But we

It is monotonic strictly increasing —hence injective.

4mi3

1 Functions 8

Figure 1.3: Plot of tan x and cot x.

Table 1.1: Some important trigonometric
identities.



7’ -5

7. e7* =1/e~.

A plot of the exponential function is shown in Figure 1.4.

Logarithm

This is the inverse of the exponential. If y = log x it means that x = eV.
Its plot can be seen in Figure 1.4 to mirror that of the exponential with
respect to the line y = x.

Remark 1.3.1 Along these notes, whenever we write x = logy we
mean that x is the solution of the equation e* = y, in other words, log
of a number is the exponent to which we need to rise ¢ in order to
obtain that number. In particular log1 = 0 and loge = 1.

The main properties of the logarithm (derived from those of the expo-
nential) are the following;:

Its domain is (0, o).

Its image is R —hence it is surjective.

It is monotonic strictly increasing —hence injective.
log1 =0.

log(x") = alogx.

log(xy) = log x +logy.

log(x/y) = logx —log y.

NGOl PN

1 Functions

Figure 1.4: Plot of e and log x.
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1.4 Limit of a function

Functions are defined for every single point of their domains. However,
differential calculus has to do with the behaviour of functions “around”
points, not just at them. The limit of a function is a way to characterise
that behavior. The idea is to know what value the function is approaching
as we get closer and closer to a certain point a (not necessarily in the

domain of the function).

Example 1.4.1 Consider the function f(x) = x? and the point a = 2 (in
the domain). As we take values of x closer and closer to 2, the output
gets closer and closer to 4. This can be shown formally, but for our
purposes it will be enough to understand the qualitative idea. We write

lim x? = 4.
x—2

Example 1.4.2 The previous example might suggest that calculating
a limit could be as simple as evaluating f(a). To show that this is not
always the case consider the function

x—1
x2-1’

fx) =

a rational function whose domain is R — {1}. What happens as we
get closer to 1? Using the calculator, we can see that £(0.9) = 0.526,
£(0.99) = 0.5025, £(0.999) = 0.5002 and f(0.9999) = 0.50002. Again,
this can be proven rigorously, but you get the idea. We write

oo x—1
im —— =
x—>1x2—1

1

2
even though 1 is not in the domain of f (hence f(1) does not even
exists).

If, as x — a, a function grows without limit, we say that the limit of f at

a is infinite.

Proposed Exercise 1.4.1 What is the limit of f(x) = 1/(x —1) as x
approaches 1?

1.5 Continuity

Those functions whose limit at a point 4 of their domain coincides with
the value of that function at that point play a very special role in calculus.
They mainly coincide with those functions whose graph “can be plotted
without lifting the pen from the paper” —which is the intuitive notion
The formal definition of continuity is the

of a continuous function.?

following:

Definition 1.5.1 (Continuity) A real function f is said to be continuous

1 Functions 10

3: We say ‘mainly’ because there are very
weird functions, which one would intu-
itively not refer to them as continuous, and
nevertheless they are continuous in some
subsets. But we shall not be concerned
with these functions in this course. We
will rather focus on practical, “sensible”
functions.



at a point a of its domain if
lim f(x) = f(a). (1.12)
X—a

Continuous functions are very nice, and so if you sum/multiply/divide
two continuous functions, you get a continuous function. The composition
of two continuous functions is continuous, and the inverse of a continuous
functions is continuous too.

Finally, two important properties of continuous functions. A continuous
function in a closed interval reaches its maximum and minimum values
within the interval (in particular, it is bounded). It also reaches all the
intermediate values between the maximum and the minimum.

Discontinuities

Discontinuities are points where a function is not continuous. There are
several reasons why a function may not be continuous at a point, and
some of them bear a specific name.

sin x

A function like f(x) =

the denominator vanishes at that point. However, the function has a well
defined limit at that point (try to guess it with the calculator):

is continuous in all R except x = 0, because

in x
lim 228 — 1.
x—0 X
So we can re-define the function to be
sin x
—, x#0,
flx)=19 «x
1 x =0,

and now it is continuous everywhere in R. One such discontinuity is
called an avoidable discontinuity because it can be “avoided” by properly
defining the function.

The case of the Heaviside step function

0 x<0,

H) = 1 x>0,
typifies a stronger case of discontinuity, which cannot be avoided. The
function is continuous in R —{0} (because it is a constant for x < 0 and for
x > 0), but at x = 0 the left-handed limit is 0 whereas the right-handed
limit is 1. So the limit when x — 0 does not exist because, although the
two one-sided limits exist, they are different. This is a jump discontinuity
because the graph of the function “jumps” at that point.

In some cases the function is not continuous because the one or both
of the two one-sided limits is +co. Such is the case of 1/x or log x. We
say that the function has a singularity at that point. We also call it an
asymptote.

1 Functions
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Finally, a function can be discontinuous simply because it has no limit
at a point. For instance, sin % is continuous in R — {0} because the limit
when x — 0 does not exist.

Proposed Exercise 1.5.1 Which kind of discontinuity has the function
f(x)=xsinlatx=0?



Exercises

Exercise 1.1 Determine the domain of the following functions:

1 1
(i) flx)= PER—— v) f(x)= m;

(i) f(x)=V1i-x2+Vx2-1; (vi) f(x)=log(x — x2);
(i) £(x) = ————; i Vo ¥

x=Vi—x2 (vif) f(x) = log x

(iv) f(x)=V1-V4-x2%

7

Exercise 1.2

(a) If f and g are both odd functions, what are f + g, fg, and f o g?
(b) And what are the same functions if now f is even and g is odd?

Exercise 1.3 Check whether the following functions are even or odd:

0 f0)= (iv) £() = cos(x")sin(x2)e '
N —
(i) f(x)= ﬁ+f Nreare
(i) f(x)= sinx (vi) f(x)=log ( Vx2 +1-— x).

Exercise 1.4

(a) Determine which of these functions are injective. For those that are
obtain their inverse. For those that are not, find two points with
the same image.

@) f(x)=7x—-4; (v) f(x)=x2—3x+2,-
(i) f(x)=sin(7x —4); (vi) f(x) = x2 T
(iii) f(X) =(x+ 1)3 +2; (vii) f(x) =e%;
(iv) f(x) = z If (viii) f(x) = log(x +1).

(b) Prove that f(x) = x? — 3x + 2 is injective in (3/2, o).
(c) Determine if those same functions are surjective and bijective in
their domains.

Exercise 1.5 Consider the function f(x) = 3sin(2x — ) + 1.

1. Determine the amplitude, defined as A = max f(x) — min f(x).

2. Determine the period, defined as the minimal value c that yields
f(x+c)=f(x)forall x € R.

3. Determine the phase shift with respect to sin x.

4. Determine the vertical shift with respect to sin x.

Exercise 1.6 Use the formulas
sin(x + ) =sinxcosy + cos x siny,

cos(x + y) = cosxcosy —sinx siny

to prove the following identities:



sin(x + 71/2) = cos x.

cos(x —7/2) = sin x. (what does this tell you about sin x and cos x?)
1 = cos? x + sin? x.

COSZ x = 1+cos2x

sin?x =

G PN =

1-sin2x
s

Exercise 1.7 Find all solutions for x in the interval [0, 27) for the equation
2cosx —3=0.
Exercise 1.8

(a) Describe the function g in terms of f in the following cases (c € R
is a constant):

(i) gx) = f(x)+¢; V) g(x) = f(xl);
(ii) gx) = f(x +c); (vi) g(x) =1[f(x)l;
(it) g(x) = f(cx); (vil) g(x) =1/f(x);
(iv) g(x) = f(1/x); (viii) g(x) = max{f(x),0}.

(b) Plot the functions when f(x) = x2.
(c) Plot the functions when f(x) = sinx.

Exercise 1.9 Sketch, using the fewest possible calculations, the graph of
the following functions:

i) f(x)=(x+2?*-1; (v f(x) = min{x, x%};
(i) f(x)=Vd-x; vi) f(x)=le* =-1|;

)
(vi)
(i) f(x) = x2 L (vil) f(x) = |x2 = 1];
x (viii) f(x)=1-e;
(iv) f(x)= (ix) f(x) = log(x? - 1);
)

T ) F(x) = xsin(1/x).

Exercise 1.10 Calculate the following limits, simplifying the common
factors that numerator and denominator may contain:

x™ —g"

(i) lim ,neN;
x—a X —4a
(i) lim M;
X—a -
T e
(i) lim ————;
x—0 X

1 2
(@) ;133}(\/— 1 x—1)'

HINT: This formula will be useful:

— (x_y)zxn—kyk 1 (X y)(xn 1 —2y+xn 3y2+ +Xy n—1)
=1

Exercise 1.11 Calculate the following limits:

S4dx -7
() lim —— %

S e
X000 7x2 — V2x6 + x°
i 3

X +smx

ii) lim ————;
i) x>0 5x+6

Exercises
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(iii) lim B A ;

X—00 x4 m
(iv) lim (Vx2 +4x — x);

X—00
Exercise 1.12 Study the continuity of the following functions:

=5x
. e + cos x
O f0 = T g1

(ii) f(x)=e¥*+x%-9;
(iii) f(x) = x%tan(3x + 2);

sin(rtx), x < -1,

@iv) f(x)=1]x]-x, -1<x<1,
(x-1% x=>1;
x2, x <=2,

W) f(x)=1]x*-1], —2<x<2,
4x -5, x>2;
(x=1)%, x>1,
(vi) f(x)=qx—-|x], -1<x<1,
x+1, x < —1.

Exercise 1.13 Bolzano’s theorem states that a continuous function in
[a, b] where the sign of f(a) and f (D) is different has to cross zero. Which
of these equations have at least one solution (f(x) = 0) in the specified
set?

(i) x>—-18x+2=0,in[-1,1];
(i) x —sinx =1,in R;
(iii) e* +1=0,inR;

(iv) cosx+2=0,inR;

Exercises
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Derivatives

2.1 Concept and definition

Derivatives are introduced to characterise the rate of variation of a function
with a number. The rate of variation measures how much the function
f (x) increases (positive) or decreases (negative) per unit of variation of
the variable x. Thus, within the interval [a, x] this rate will be

Af _ f()=fl@)

Ax X—a

Figure 2.1 illustrates that the narrower the interval [a, x] where the
variation is measured the more accurate the estimated rate! . Ideally, the
measure would be perfect if this interval were infinitely narrow. This is
the notion of derivative and the motivation of its definition:

Definition 2.1.1 (Derivative) The derivative of the function f at the point
a of its domain is defined as

oy e S = fa)
f(a)—hm?,

X—a

(2.1)

provided the limit exists. (When it does, we say that the function is differen-
tiable at a.)

Figure 2.1 also shows that f’(a) —the rate of variation of f(x) at x = a—
coincides with the slope of the straight line tangent to the graph of f(x) at
the point (a, f(a)) —which is an important geometric characterization
of the derivative concept.

1: Think of measuring the speed of a car
by dividing the distance it has run in a
given time.

Figure 2.1: The rate of variation of f(x) as
obtained for different intervals.



2 Derivatives

Remark 2.1.1 Often you will see the derivative denoted as

df

’

a) = —(a).

f@=

This is Leibniz’s notation —a bit more mnemotechnical because it

reminds that the derivative is, after all, a rate of change of f.

Example 2.1.1 Consider the function f(x) = x2. Its derivative at any
point x would be, according to the definition,

+ h)? — x2 24 2xh + h?—x2
fim EEM = 22X X lim(Qx + ) = 2x.
h—0 h h—0 h h—0

Therefore f’(x) = 2x.
We can generalize this result. Using Newton’s binomial formula:
o (1

(x+h)" = kzz(]) (k)x"h"—k,
we can prove that the derivative of f(x) = x", with n € N arbitrary, at
any point x € R is f’(x) = nx"~1. (Note that this formula holds even
if n = 0, for which f(x) = 1.)
Example 2.1.2 Let f(x) = sin x and g(x) = cos x. By definition

sin(x + k) — sin x i sin x cos i + cos x sin i — sin x

4 = l. =
fi(x) hlg(l) h 1335 h
. . cosh—-1 . sinh
=sinx lim ——— + cosx lim
h—0 h h—0 h
But
sinh cosh—1 1—cosh 1
li =1, Iim —=-limh——=-0-=-=0,
hlg(l) h hlg(l) h hlﬂ% h?

hence f’(x) = cos x.

Similarly
, . cos(x+h)—cosx .. cosxcosh —sinxsinh — cosx
g'(x) = lim = lim
h—0 h h—0 h
. cosh-1 . sinh .
=cosx lim ——— —sinx lim = —sinx.
h—0 h h—0 h
Thus we have the result (sin x)’ = cos x, (cos x)’ = —sin x.
Example 2.1.3 Let f(x) = ¢* and compute
ex+h —eX eh -1
‘(x) = lim ———— =¢* lim =e".
f®) h—0 h h—0

We say that f is differentiable in the interval (a, b) if it is differentiable at
every point of the interval.

17



The function f’, defined as

ffPA—R

2.2
Xy = £, 22

where A is the set of points where f is differentiable, is called the
derivative function of f (or simply the derivative of f).

Likewise, we can introduce higher order derivatives. For instance, f” is
the second derivative of f, i.e., the derivative function of f’. Or f* is the
third derivative of f, i.e., the derivative function of f”. And so on. (Beyond
the third derivative it is customary to denote higher order derivatives as
£, the nth derivative of f.)

The following theorem emphasises that differentiability is a more restric-
tive property than continuity.

Theorem 2.1.1 If f is differentiable at a it is also continuous at a.

An obvious consequence of this theorem is that discontinuous functions
are not differentiable at the discontinuities.

Example 2.1.4 Function f(x) = |x| is continuous in R, however, f’(0)
does not exist. The reason is that
x| -0 X
lim <] = lim — =1

x—0* x—0 x—0t X

because |x| = x for x > 0. However

lim =0 = lim = =-1
x—0- x—0 x—0- X

because |x| = —x for x < 0. Therefore the limit defining f’(0) does not
exists because the left-handed and right-handed limits are different.

2.2 Introduction to Differential Equations

Think of an animal population, and let N(#) be the number of animals at
time t.> How does N change? Assuming there is no migration, N will
increase when there are births, and decrease when there are deaths.

So, if we look at time ¢t + At, where At is a small interval, we can write
N(t + At) = N(t) + bN(t)At — dN(t)At, (2.3)

where b and d are the number of births and deaths per capita and per
unit time, respectively. Note that we have written these rates as constants.
This is, of course, a massive simplification: we are assuming that these
rates are constant, and this will have consequences for the way the model
behaves. There is nothing wrong with this: all models have assumptions,
we just need to be clear on what they are. The validity of a model will
depend strongly on its assumptions. The assumptions that we are making
here are: (1) all animals are capable of giving birth, (2) an animal’s ability

2 Derivatives 18

2: Note that until now we have been using
y as a function of x. Here the independent
variable is time.



to give birth is constant over its lifetime from birth to death and (3) all
animals have the same likelihood of giving birth. Then for each animal,
there is a single constant rate b at which that animal gives birth. And
similarly with death: (1) every animal has the same likelihood of dying,
(2) the death rate does not depend on the number of animals, (3) the
death rate does not vary with time.

Now, it seems natural to think that, as we make At smaller, our knowledge
of the population size will be better. With some algebra, we can rewrite
eq. (2.3) as
N(t + At) — N(t)
At
and, taking the limit when At — 0, we get

= (b - dN(t) (2.4)

N'(t) = rN(#), (2.5)

where ¥ = b —d is the effective growth rate. This equation is a differential
equation, because it involves derivatives. The solution of a differential
equation is not a number, but a function. In this case, the function N(t)
that we ignore. Note that in this case, as in many real-life problems, it
is quite easy for us to understand how a variable changes in time (or
space), but not so easy to know its value at a given point in time (or
space). Hence, differential equations are very useful.

Proposed Exercise 2.2.1 We will see how to solve (some) differential
equations later in the course, but see if you can find a solution of the
form N(t) = e*, by finding N’(t) and substituting into Equation 2.5.
What is the value of a? Is that solution unique?

Actually, for many real-life problems we will not know how to solve
the differential equation analytically®> but we will be able to solve it
numerically. We will not cover numerical simulations in this course, but
know that this, too, is a powerful tool for modelling.

2.3 Algebraic properties of derivatives

The fact that derivatives are defined as limits leads to the following
algebraic properties:

Proposition 2.3.1 Let f and g be two differentiable functions (in an appro-
priate set). Then:

(i) Af +pug) =Af +ug’, where A, p € R; (linearity)
(i) (fg) =f'gs+f8" (Leibniz’s rule)
(iii) (fog) =(f"0g)g"; (chain rule)
(iv) (g) = fgg;zfg, provided g # 0; (quotient rule)
@ (fY) = _L_ (inverse rule)

frof

2 Derivatives 19

3: That means finding a function N(¢) in
terms of elementary functions.



The following examples illustrate how these rules can be applied to
obtain new derivatives:

Example 2.3.1 If f(x) = e* then f~!(x) = log x. Therefore

1 1
’— = —
(logx)' = pae

Logarithms can have a different base, say a > 0. They are denoted
log, x and form the inverse function of a*. Now a* = e*1°8%, 50 by the
chain rule

(ax)/ — (exloga) — (exlogﬂ)loga =" loga.

Therefore 1 1
1 "= = .
(log, x) 2% loga _ xloga

Example 2.3.2 Function f(x) = x%, with @ € R, can be written as
f(x) = e%198, Thus, applying the chain rule,

o o _
(xa)/ — ealogx_ =x*Z = gx® 1.
X X

Example 2.3.3 If f(x) = sinx in [-7t/2, /2] then f~!(x) = arcsin x.
Thus,
1

cos(arcsin x)

But cos x = V1 — sin® x in [-7t/2, 71/2], so

(arcsinx)’ =

1 1

V1 —sin®(arcsinx) V1 -2

(arcsin x)” =

because sin(arcsin x) = x.

f) - fix) f(x) f'(x)

c 0 sin x Ccos X
x® ax® 1 Cos X —sinx
1
er e tanx >— = 1+ tan® x
cos? x
1
a* a*loga arctan x 5
1+x
1 1 . 1
ogx  — arcsin x
X \/1 _ x2
1 -1
log, x arccos x

xloga V1 - 22
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Table 2.1: Derivatives of most elementary
functions. Here c,a € R, a > 0.



Exercises

Exercise 2.1 Let f and g be differentiable functions in R. Write down
the derivative of the following functions in their respective domains:

(1) h(x) =+/f(x)?+ g(x)% (iv) h(x) = log (g(x)sin f(x));

(i) h(x) = arctan (M) ) hx) = F)5);
g(x) i) i) = 1 |
(i) h(x) = f(g(x))e/™; log (f(x) + g(x)?)

Exercise 2.2 Check that the following functions satisfy the specified
differential equations, where ¢, ¢1, and ¢, are constants:

@) flx)= % satisfies xf' + f = 0;

(i) f(x)= xtanx satisfies xf’ — f — f? = x?;
(iii) f(x) = c1sin3x + 3 cos 3x satisfies f” +9f =0;
(iv) f(x) = c1% + coe73" satisfies f” —9f = 0;

(V) f(x) = c1e®* + cpe™ satisfies f” — 7'+ 10f = 0;
(vi) f(x) =log(cie™ +e™) + c, satisfies f + (f')* = 1.

Exercise 2.3 Prove the identities (valid only in the specified regions)

. 1 =
(i) arctanx + arctan — = 5 for x > 0;
X

. 1+x i
(ii) arctan 1 —arctanx = 1 forx <1;

. 2x
(iii) 2arctan x + arcsin 11 =, forx > 1.

2
HINT: Differentiate the equation and check one point of the specified

region.

Exercise 2.4 At which points does the graph of the function f(x) =
x + (sin x)!/% has a vertical tangent?

Exercise 2.5 Given the function
al x#0
flx)={1+el/r’ ’
0 x=0,

calculate the angle between the tangents on the left and on the right of
its graph at x = 0.

Exercise 2.6 Find the sets where the function f(x) = Vx + 2arccos(x +2)
is continuous and differentiable.

Exercise 2.7 Calculate the smallest & for which f(x) = |ax? — x + 3| is
differentiable in R.

Exercise 2.8 Given the function

a+bx?, |x|<c,
x)=41 c>0
f&) —, |x| > c, !
| x|

Exercises
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find a and b so that it is continuous and differentiable in R.

Exercise 2.9 Determine the sets where it is continuous and where it is
differentiable

flx) =



Taylor Expansions

3.1 Taylor Polynomial

From our definition of derivative as the limit of a quotient, we can write

farm-f@ (@) - f@)
o W

~ f'(a),
or, in another words,

f(x)~ fa) + f'(a)(x - a).

This approximation will be better as x — a and will be exact in the
limit.

Note that both f(a) and f’(a) are constants, and so we are approximating
f by a polynomial of degree 1, a line.

Take f(x) = e* and a4 = 0. What is the linear approximation of e* at 0?
The derivative of e* is itself e* whichat x = Oisequalto1.Soe* = 1+x.

How good is the approximation? Take x = 0.1 for instance. The true value
is ¢! = 1.10517091808.. . ., so the error appears in the third decimal. In
general, the error will be of the same order of magnitude as x21  which

means it will be some constant E, times x2.

But we know that e* is not linear. Can we increase the degree of the
polynomial so that the approximation is better? In other words: if we
write as approximation 1 + x + c2x2, what is the value that ¢, needs to
take so that the approximation is good enough? Note that the error will
now be of the order of magnitude of x3, something like E3x3, withEz a
constant? :

e =14 x + cox? + E3x°.

Now, if we differentiate twice, we get
e* =2cp + 6E3x.

At x = 0 the equation becomes ¢, = 1/2. Note that, for a general function
f, this will be equal to f”(0)/2. So 1 + x + x2/2 is the polynomial of
second degree that best approximates e*. And if we substitute x = 0.1
like before, and we get 1.105, and the error is just 0.00017, of the same
order as 0.1° = 0.0013

We can keep adding terms. If we try to find the polynomial of third
degree that best approximates e*, we have

2
X
ex:1+x+E+C3x3+E4x4,

1: Why this is so is harder to explain, but
trust me

2: Again, trust me. It would take us too
long to explain this.

3: Itis actually six times smaller. We'll get
there.



and differentiating three times we get
e* =3-2c3+4-3-2E4x.

Again, at x = 0 this becomes c3 = 1/6 and, for a general f, it is c3 =
£7(0)/3!. The approximation now is 1.1051666666 . .. and the error is
only 0.0000042, or around 0.1%/24.

In general, we have

Trl+x+ —2 + x_3 +o+ i
N TRAT n
Since we know that the remaining terms will be of the order of x"*! or

smaller, we sometimes write

2 x3 X"
ef=1l+x+—+=+--+—+o0(x")
2t 3! n!

to mean that this approximation is exact up to terms that vanish faster

than x™.4

This pattern that we have seen for the exponential holds for all functions
that are differentiable in a given interval, which leads to the following
definition:

Definition 3.1.1 (Taylor polynomial)The polynomial of nth degree that best
approximates the function f at the point a is

f/l(a)
2!

f™ (@)

n!

Py a(x) = f(a)+f'(a)(x—a)+ (x—a)?+-- -+ (x—a)", (3.1)

which we will refer to as the nth order Taylor polynomial of function f at
the point a.

The error (also called the remainder) of the approximation is the difference
between the Taylor polynomial and the function, and is given by

f(n+1)(c)

i) (x —a)*™, (3.2)

Rn,a(x) = f(X) - Pn,a(x) =
where ¢ € (a, x).

Example 3.1.1 Consider the function f(x) = (1 + x)%, where o € R.
Then f(0) = 1 and

fl(x) = a1l +x)*7, £(0) = a,
(%) = a(a —1)(1+x)*72, £7(0) = a(a - 1),

F7(x) = a(a — 1)(a = 2)(1 +x)*3, £7(0) = a(a - 1)(a - 2),

3 Taylor Expansions 24

4: This notation is called Landau’s “small
0”, in case you want to look it up.

fP@) =a@-1)---(@a-n+1DA+x)*", fOO)=al@-1)---(a-n+1).



Therefore

o
I+x)*=1+ax+ X5+ +

(a—-1) ,
2

+a(a—1)-~-(a—n+1)

0 x" +o(x") (x —0).

There is an interesting notation for this expression derived from the
formula for the binomial coefficients. If & € N,

(a): ala=1)---(@a-n+1)

n n!

Since this formula is meaningful even if @ € R, we use it as a definition
and thus write

n

1+x)°= Z (z)xk +o(x") (x —0).

k=0

This is the famous binomial formula as it was first obtained by Newton
in 1665.

Proposed Exercise 3.1.1 Find the Taylor polynomial of degree n and
centered at x = 0 for sin x, cos x and log(1 + x)?

f(x) Pro(x)
-1 —1)-(@—n+1
(1+x)® 1+ax+%x2+m+a(a )n'(a 1 )x”
2 3 4 n
XX x X
log(1 + e G VR
0gl+x) x= T+ =tk (-])
x? X3 x"
X —_ R  —
e 1+x+2'+3! oy
35 47 2041
sinx P +(-1D)" il
3157 2n +1)!
2 4 46 2n
X n X
COS X 1—E+E—a+ +(—) (27‘[)'

3.2 Taylor series

Take the function f(x) = (1 — x)! and start calculating its Taylor polyno-

mial at x = 0. The first derivatives are

flx)=@1-2)7
() =2(1-x)7"
f(x)=31(1-x)"*
flox) =41 -x)7

= f(0)=1,
= f(0)=2,
= f"(0) =3,
= f7(0) =4,
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Table 3.1: Taylor polynomials of some ele-
mentary functionsasx — 0.(Herea € R.)



There seems to be a pattern, that is, f (") = 511, If we substitute this into
the formula for the Taylor polynomial of degree n centered at x = 0, we

get:

1 (H+1)C
—=1+x+x2+x3+x4+~~-+x”+u i
1-x (n+1)

Now, we can keep doing this forever, and as n — oo the error term will
go to zero: since f is infinitely differentiable in an interval around x = 0°
then the n + 1-th derivative, f""*)(c) will be bounded by some real
number M. But (n + 1)! — o0 asn — infty,so E,o(x) — 0.

This means that

1 [e]
—— =T+x+xt+ 0+t = DX, 3.3
1-x % (33)

where the right-hand side denotes an infite sum, which in mathematical
terms is called a series. Because this sum is made up of powers of x, we
call it a power series. There are many types of power series® but, because
this comes from the Taylos polynomial, we call it the Taylor series.

What we are saying here is that our function f(x) = (1 — x)~! is exactly
equal to its Taylor series in a given interval, in this case (-1,1). So
this means that we can understand any smooth function as an infinite
polynomial, and that we can get any information about the function we
need from this series.

Proposed Exercise 3.2.1 Can you do the same for e¥, sin x, cos x and
log(1 + x)?

Ok, so the function is identical to its Taylor series, but is this true for
all x in the domain? If you substitute x = 2 in Equation (3.3), and keep
adding terms, you'll see that the sum does not approach or converge (in

mathematical terms) to the actual value of the function 1/(1 —2) = =17 .

When does this happen?

We don’t have time to explain why, but a power series 3" a,(x — a)"
will converge if

lim Vlagx—a"<1 o (nm "|an|)|x—u|<1. (3.4)
n—oo n—00

Definition 3.2.1 (Convergence radius)We can define the number p > 0 by

the formula

An+1
an

lim

n—o0

(3.5

1
— = lim +|a,|
p n—oo

We refer to p as the convergence radius of the series because condition (3.4)
holds for every x such that

|x —a| <p. (3.6)

In other words, the power series 3.7, a,(x — a)" converges absolutely in the
interval (a — p,a + p).
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5: More precisely, this is true for this ex-
ample in ther interval (-1, 1). The reasons
for this are hard to explain without some
knowledge of complex variable.

6: In general, a power series is a series of
the form Z;":O an(x —a)", an € R.

7: Especially since every summand in the
series is positive!!



3 Taylor Expansions

In summary, the power series converges if x € (a — p, a + p) and diverges
(goes to c0) otherwise, except maybe at x = a + p. At these two points
the analysis has to be done on a case-by-case basis.

Proposed Exercise 3.2.2 Find the radius of convergence and show that
the interval of convergence of the power series

1 [se]
— =l+x+x2+23+xt x4 = D "
T-x n=0

is (=1,1). What happens at x = 1 and x = —1?

Example 3.2.1 Consider the Taylor expansion of f(x) = e* with
remainder. Given that f ) (x) = e* we will have

n n n+1

x
et = Zk n! + Ruo(x), Ryo(x) = e (n+1)
=0 '°* :

0<0<1.

Since the exponential is an increasing function, e* < max{1, e*}
—that includes the cases x > 0 and x < 0. Therefore

n
0 < Ryp(x) < max{l,e"}% — noo0

for any given x € R. Hence
e n

x z :
e = .
!

k=0 "°

=

X

3.3 Numerical approximations

With the expression of the remainder we can find bounds to the error that
we incur when approximating a function by its Taylor polynomial of a
certain degree. This allows us to obtain numerical values of transcendental
functions —which would otherwise be difficult to obtain. Some examples
illustrate the method.

Example 3.3.1 We know that

3

0
sinx = x — % oty R4[0(X), R4[0(X) = COS( x) =

<0<1.
1209(,061

We of course ignore the value of 6 (otherwise sin x could be exactly
computed), but we know that irrespective of 6 and x, | cos(6x)| < 1.
Thus,
|x[°
< —.
|R40(x)] < 120
Suppose we want to compute sin(0.1). From the previous inequality
| Ry 0(x)| < 8.3333 x 10~8. Now compare:

sin(0.1) = 0.09983341664 . . ., P4(0.1) = 0.09983333333.. ..
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The error incurred using this simple approximation is 8.3313 x 1078,
very close to our estimate.

Suppose we do not want our error to be larger than 10™°. What is the
largest x for which we can use this approximation? To answer this
question we simply set the estimate to the error tolerance and find |x|:

£

0 =107 = |x| = V120 % 0.1 ~ 0.26.

Example 3.3.2 Imagine that we want to compute V3.8. We can do it
by expanding the function V4 — x around x = 0. Thus,

f(x)=V4- f(0)=Va=2,
noy= —L = _1
F@= FO= =1
” =l ” -1 _ 1
£ = s 0= T = =55
" _ =8
f(x) = 5@
Then )
VE=x=2-% - = + Roo(),
where q
Rop(x) = Wx3, 0<6<1.
Ifx >0, X X
[Roo(x)] < ——— = —

— 1)5/2 5°
16(4 — x) 16 ( g x)
Now we can estimate

02 (0.2
V38="P,0(02)=2- - ( 64) =1.949375.. ..

and use this estimation in the error bound

(0.2)3

~1.78x107°.
16(1.949375 ... )5

[R2,0(x)| <
As a matter of fact,

V3.8 =1.949358869...,  P0(0.2) = 1.949375,

the difference being 1.61 x 107°.
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Exercises

Exercise 3.1 Write the Taylor polynomial Ps(x) for these functions:

(i) e*sinx; (iii) sin x cos2x; (v) sin’x;

(i) e cos2x; (iv) e*log(1 - x); (vi) ! :
1-x3

Exercise 3.2 Write the polynomial x* — 5x% + x2 — 3x + 4 in powers of
x—4.

HINT: Note that, if f is a polynomial of degree n, the nth degree Taylor

polynomial of f centered at a is exactly identical to f.

Exercise 3.3 Write the Taylor polynomial P, ,(x) for these functions
around the specified a:

(i) f(x)=1/xaround a = —1; (iii) f(x) = (1+e*)?arounda = 0;

(i) f(x)= xe " around a = 0; (iv) f(x)=sinx around a = m.

Exercise 3.4 Use a Taylor polynomial of the specified degree to provide
an approximation to these numbers, and give an upper bound for the
error incurred:

1
(i) ——, degree 3;

V1.1
(ii) V28, degree 2.
(iil) log(3/2), degree 4.
Exercise 3.5 Given the function f(x) = cos x + e”,
(i) find its Taylor polynomial P5 o(x);
(i) estimate an upper bound for the error incurred if -1/4 < x < 1/4.
Exercise 3.6 What is the smallest degree Taylor polynomial necessary to

approximate the function f(x) = e¢* in [-1, 1] with at least three exact
decimal places?

Exercise 3.7 Expand in power series the following functions, specifying
the domain of validity of those expansions:

(i) f(x)=sin’x; (iii) f(x)= ﬁ;
.. 1+ 1
(i) f(x) = log \ T (v) f(x) = 53—



Local Behavior of Functions

4.1 Local Extrema

We will see here a set of results related to the local behaviour of a function
(i.e., the behaviour within intervals). To begin with, we need to define
local maxima and minima.

We say that a function f has a local maximum at a point a of its domain,
if there is some interval (a — 6,4 + 0) such that f(x) < f(a) for all
x€(a—-05,a+0).

We say that a function f has a local minimum at a point a of its domain,
if there is some interval (a — 0,a + 0) such that f(x) > f(a) for all
x€(a—0,a+09).

Local maxima and minima are collectively called local extrema. If local
extrema remain extrema for all x in the domain of f, they are absolute
extrema.

Theorem 4.1.1 (Derivatives at local extrema) If f has a local extremum at
a point a where it is differentible then f’(a) = 0.

However:

Example 4.1.1 Consider the function f(x) = |x(1 — x)|. We know that
x(1-x)>0if0<x <1,and x(1 —x) < 0if x < 0or x > 1. Then we

can rewrite
x(1-x), 0<x<1,
f(x) =
x(x—-1), x<O0orx > 1.

Let us compute the derivative,

1-2x, 0<x<1,
f(x)=
2x—1, x<O0orx>1.

The derivative at x = 0 and x = 1 does not exists because, being
f(0) =0and f(x) = x(x —1) forx <0,

L f@-fO L xx-1)
X

x—0~ x—=0 x—0- - xli%l‘(x =)= =i

However, since f(x) = x(1 — x) for x > 0,

7 fx)=f0) = x(1-x)
im ————— = lim ———
0 X

= lim (1 —x) =1.
x—0* X — xi%’&( X)

x—0*

Since both one-sided limits are different the limit does not exist. For
x = 1 the argument is similar.

Now to find the local extrema we need to look for the solutions of




f’(x) = 0. This equation boils down to 2x = 1, whose solution is x = %

Figure 4.1 presents a plot of f(x). One can clearly see that x = 1 is
indeed a local maximum —albeit not absolute, because there are points
where f(x) > f(1/2)—; however, we can also see that x = 0 and x = 1
are local minima, but they are not contained in the equation f’(x) = 0.

(Incidentally, these minima are both absolute.)

There is no contradiction with the theorem though, because, as we
have just seen, the function is not differentiable at those points —a
premise of the theorem.

This example brings about the point that, when looking for extrema,
we need to check not only the solutions of f(x) = 0, but also the points
where f’(x) does not exist.

06 0.4 02 0 0.2 04 06 0.8 1 12 14 16

Remark 4.1.1 Notice also that f’(c) = 0 does not imply that c is an
extremum. For instance take f(x) = x>. Clearly f’(0) = 0, however
there is no extremum at x = 0 because f(x) > 0for x > 0and f(x) <0
for x < 0. We will see later how to characterise maxima and minima
using higher-order derivatives.

From the zeroth-degree Taylor polynomial, we know that f(b) — f(a) =

f'(c)(b — a) where c € (a,b)! . From this we can conclude:

Corollary 4.1.2 (i) If f’(x) = 0 for all x € (a,b) then f is constant in
(a,b).
(i) If f'(x) = ¢'(x) for all x € (a,b) then f(x) = g(x) + k in (a,b),
with k € R a constant.
(iii) If f'(x) > O for all x € (a, b) then f is strictly increasing in (a, b).
(iv) If f'(x) < O forall x € (a,b) then f is strictly decreasing in (a, b).

These resuls are useful in identifying the nature of extrema, as this

example illustrates:

Example 4.1.2 Find the absolute extrema of the function f(x) =
2x5/3 + 5x2/3 in the interval [-8, 1].

4 Local Behavior of Functions 31

Figure 4.1: Plot of the function f(x) =
[x(1 =)l

1: This result is also known as the mean
value theorem.



There are four steps to solve a problem like this:

(1) Find the set where f’(x) exists, and solve the equation f’(x) = 0
within that set.

(2) Take all solutions of f’(x) = 0 along with the points where f’(x)
does not exist.

(3) Check whether any of those pointis alocal extremum by checking
the sign of f” on their left and on their right.

(4) Compare the value of f(x) in all those points as well as the values
at the extremes of the interval. Select the largest and the smallest
and identify the absolute extrema.

In the case we are dealing with here
10 10
f'(x) = ?(xz/3 +x7 13 = ?(x + 1) 13,

This function is well defined for all x # 0. At x = 0 the derivative does
not exists because the limit

= lim
x—0 X x—0

5/3 2/3
m 2x°° + 5228 (2x2/3 4 5x—1/3)

diverges.

Now;, the solution of f(x) = 0is x = -1, and f’(x) > 0 for x < -1

(notice that x /3 < 0 whenever x < 0), but f’(x) < 0 for -1 < x < 0.

The function thus increases on the left of x = —1 and decreases on the
right, therefore there is a local maximum at x = —1.

Asfor x =0, f'(x) < 0for -1 < x <0, but f’(x) > 0 for x > 0. Thus
there is a local minimum at x = 0.

That is all for local extrema. Concerning absolute extrema we need to
compute

f(_l) =3, f(O) =0, f(—8) = —44, f(l) =7.

So the absolute maximum is at x = 1 (the rightmost extreme of the
interval) and the absolute minimum is at x = —8 (the leftmost extreme
of the interval).

Figure 4.2 illustrates what we have just found.

O A N
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-0,

Figure 4.2: Plot of the function f(x) =
2x5/3 4 5x2/3,
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4.2 Convexity and Concavity

We saw in Corollary 4.1.2 that the sign of f’(x) determines wether the
function is increasing (positive) or decreasing (negative) at x, and The-
orem 4.1.1 showed that at local extrema the function satisfies f’(x) = 0
(provided it is differentiable). In its second formulation —with the
remainder— Taylor’s theorem provides a more detailed information
about the local behaviour of a function which has higher order deriva-
tives.

Before getting into it, we need to characterise another qualitative feature
of functions: whether their slope increases or decreases. This feature is
called convexity.

We say that f is convex at x = a if it is locally above its tangent at that
point, i.e., f(x) > f(a)+ f'(a)(x —a) for all 0 < |x — a| < €, for some
€>0.

Likewise, we say that it is concave at x = 4 if it is locally below its tangent
a that point, i.e., f(x) < f(a) + f’(a)(x —a) forall 0 < |x —a| < ¢, for
some € > 0.

Finally, we say that f has an inflection point at x = a if the sign of
f(x) = f(a) = f’(a)(x — a) is different for x < a and for x > a.

Figure 4.3 illustrates these three behaviours.

convex concave inflection point

Suppose that a function f can be differentiated several times (posibly
infinitely many) in a certain interval and that the first nonzero derivative
beyond the first at x = a is f)(a). We can use Taylor’s theorem —with
Lagrange’s remainder— to write

(n)
F0 = F@+ f@e-a+ Ty,

where ¢ = (1 — 0)a + Ox with 0 < 6 < 1. One important point to stress
here is that, since f")(a) # 0 —so it is either positive or negative—, when
x is sufficiently close to 2 —and so is c— f")(c) will have the same sign
as f"(a). This is key for the argument to come.

Since we can write the Taylor expansion as

f"()

n!

f(x) = fla) = f'(a)(x —a) = (x —a)",

the sign of the left-hand side —which decides the convexity— will be
determined by sign of the product f(c)(x —a)" or, given what we have
just argued, by the sign of the product f™(a)(x — a)".

Figure 4.3: Local behaviour of a function
with respect to its tangent at a point (con-
vexity).
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Now, if 71 is odd, the sign of f"(a) is irrelevant because (x — )" has a
different sign for x < a and for x > a. Therefore a will be an inflection
point.

If n is even then (x — a)” > 0 for all x # a. Then the sign is determined
by that of f)(a). We will then have two possibilities:

(@ f () (a) > 0, and then the function is convex, or
(b) f"(a) < 0, and then the function is concave.

If added to that we have that f’(a) = 0, then for n odd nothing changes
—hence x = a still is an inflection point—, but for n even the point x = a
is a local extremum. A convex extremum (f ) (a) > 0) is a local minimum
and a concave extremum (f () < 0) is a local maximum.

All these results are summarised in Table 4.1.

n sign of f"(a) f'(a) #0 f'(a)=0
odd +/- inflection point  inflection point
even + convex local minimum
even - convex local maximum

4.3 Function graphing

All the local information provided by the derivatives can be gathered to
sketch a qualitative graph of any function f(x). The steps to follow in
graphing a function are these (some of them might not be necessary):

1. Domain: Determine precisely the set of points where the function
f(x) is defined.

2. Symmetries: It is helpful to know whether the function has one of
these symmetries:

(@) Even: f(—x) = f(x).
(b) Odd: f(~x) = ~f(x).

(c) Periodic: f(x + c) = f(x) for some ¢ > 0.

In the first two cases it is enough to represent the function for x > 0
(for x < 0 it is represented using the symmetry). In the last case
it is enough to represent the function in the interval [0, c] (or any
other interval of the same lenght) and then reproduce its graph
periodically.

Other symmetries might be possible (e.g., f(a + x) = £f(a — x),
i.e., f is even/odd around the vertical axis x = a).

3. Continuity and differentiability: Discontinuities (“jumps”) and
points where f’(x) does not exists (“cusps”) are relevant features
of the function, and might be useful in detecting local extrema.

4. Zeroes: Finding the solutions of f(x) = 0 determines where f
crosses the X axis. These points separate regions where the sign of
f remains constant.

5. Growth: Finding the solutions of f’(x) = 0 determines the regions
where f increases (f'(x) > 0) or decreases (f’(x) > 0). Usually this
is enough to locate the extrema of f.

Table 4.1: Classification of the local be-
haviour of a function according to the sign

of the first nonzero derivative f (1) (a) with
n>1.
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6. Convexity: The convex/concave regions are usually determined
by the sign of f”(x). Inflections points can be inferred from that
information (as points where the concavity changes).

7. Asymptotes: These are known curves (usually straight lines) which
f(x) approaches when it gets close to some points or to +co. The
main ones are:

(a) Vertical asymptotes: These are the vertical straight lines through
the points x = 2 where lim f(x) = *oco.
x—a*
(b) Horizontal asymptotes: These are the horizontal straight lines
y = { where { is such that lim f(x) =¢.
X—+00

(c) Inclined asymptotes: We say that y = mx + b is an asymptote of
f(x) when x — *oo if

m = lim @, b =x1iritm[f(x)—mx].

x—xo00 X

(In other words, f(x) = mx + b+ 0(1) (x = £00).)

Other types of asymptote are possible. In general, the curve y = g(x)

is an asymptote of f when x — oo if f(x) = g(x)+0(1) (x — *o0).

Xy ) -

=
d”
-

Example 4.3.1 Sketch the graph of

3x2+x+1
xX+2

fx) =

The domain of this function is R — {-2} (because the denominator
vanishes at that point.) It has no obvious symmetries and, being a
rational function, it is continuous and differentiable (an infinite number
of times) in all its domain.

We can obtain the derivative as

Figure 4.4: Sketch of f(x) =

ex+1)(x+2)-(Bx?+x+1) 6x2+13x+2-3x2—x-1 3x2+12x+1

fix) = (x + 27 - (x + 27

This derivative vanishes when 3x% + 12x + 1 = 0. The roots of this

(x +2)2

35
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parabola are x = =2 ++/11/3, i.e., x; = —0.085, x, & —3.91. For x < x;
and x > x; function f increases (f* > 0) and for x; < x < x7 it
decreases (f’ < 0).

f has no zeros because 3x2 + x + 1 > 0 for all x € R (the parabola has
no roots). So f(x) < 0 for x < =2 and f(x) > 0 for x > —2.

It is not necessary to analyse the concavity, as it can be inferred from
all the other information, including that of the asymptotes. We know

there is a vertical asymptote at x = —2 because
lim f(x) = —oo, lim f(x) = +co.
x—=2" x—=2"

There are no horizontal asymptotes because f diverges when x — =+co.
However, we can express the polynomial P(x) = 3x% + x + 1 in powers
of x + 2 using Taylor’s polynomial, because P, —»(x) = P(x). As

P(x)=3x>+x+1, P(-2) =11,
P'(x)=6x+1, P'(=2) = 11,
P”(x) =6, P"(-2) =6,

we have P(x) = 11 — 11(x + 2) + 3(x + 2). Therefore

C3xZ+x+1  11-11(x+2)+3(x +2)? 11
a x+2 B x+2 T x+2
=3x-5+0(1) (x - £),

f(x)

i.e., y = 3x — 51is an inclined asymptote both when x — +oco.

f(x) is represented in Figure 4.4.

2/3 T
12 ya

_27112 -3
o 3 27°
H ) y _3-1/2
- -2/3
Example 4.3.2 Sketch the graph of
4x
X) = .
f®) x2+9

The domain of this function is R, and it is continuous and differentiable

11
—11+3(x+2)=—— —-5+3x

x+2

Figure 4.5: Sketch of f(x) =

36
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everywhere. It is an odd function because

)= 4(-x)  4x

(—x2+9  x2+9

—f(x),

so we only need to care about the region x > 0. As every odd continuous
function f(0) = 0, and this is the only point where f croses the X axis.
Besides f(x) > 0 for x > 0.

Its derivative is

Fx) = 4(x2+9) —4x-2x  4x?+36—8x2  4(9-x?)
- (x2 +9)? T (x2492 T (x2+9)2

Thus, in x > 0 we have f’(x) > 0 for x < 3 and f’(x) < 0 for x > 3.
The function grows up to x = 3, where it has a local maximum, and
then decreases beyond that point.

As for the second derivative,

—8x(x2 +9)? — (36 — 4x2)2(x> + 9)2x  —8x(x% +9) — (36 — 4x?)4x

fix) = (x2 + 93 - (x2 + 9y
_ 8x¥-216x  8x(x?-27)
(2492 (x2+93

so f is concave (f” < 0) for x < V27 = 33 and convex (f” > 0) for
x > 3\/5. Atx = 3\/?: there is an inflection point.

Finally, there are no vertical asymptotes (f is defined in the whole R),
but since lim f(x) = 0, the X axis is a horizontal asymptote.

X—00

f(x) is represented in Figure 4.5.
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Exercises

Exercise 4.1 Let f(x) = [x3(x —4)| - 1.
(a) Find where f is continuous and where it is differentiable.

(b) Determine its extrema.

(c) Prove that f(x) = 0 has a unique solution in [0, 1].

Exercise 4.2 Solve these optimisation problems:

(a) A factory that produces tomato sauce wants to can it in cylindrical
cans of a fixed volume V. Determine their radius r and height / so
that their fabrication consumes the least possible material.

(b) A recipient with square bottom and no cap must be covered by
a thin layer of lead. If the volume of the recipient must be 32
litres, which dimensions should it have so that it requires the least
possible amount of lead?

(c) Find two numbers x,y > 0 such that x + y = 20 and x%> is
maximum.

(d) Find the rectangle inscribed in the ellipse (x/a)* + (y/b)* = 1 with
its sides parallel to the axes of the ellipse, such that its area is
maximum.

(e) With a tangent to the parabola y = 6 — x? and the positive axes one
can make a triangle. Determine which of those triangles has the
smallest area and compute it.

(f) We need to construct a box with no cap with the shape of a
parallelepiped whose base is an equilateral triangle, and whose
volume is 128 cm?. If the material for the base costs 0.20 euros/cm?
and that for the lateral surfaces costs 0.10 euros/cm?, what are the
dimensions of the cheapest such box?

(g) A right triangle ABC has vertex A at the origin, vertex B on the
circumference (x — 1)? + y? = 1 —side AB is the hypothenuse of
the triangle— and side AC on the horizontal axis. Calculate the
location of C that maximises the area of the triangle.

(h) Let P = (x0,yo) be a point of the first quadrant (xg, o > 0).
A straight line through P cuts the axes at A = (xg + «,0) and
B = (0, yo + B). Calculate @ > 0 and 8 > 0 so as to minimise

(i) the length of segment AB;
(if) the sum of the lengths of OA and OB;
(iii) the area of the triangle OAB.
HINT: Triangle similarity implies = xoyo/a.
Exercise 4.3 Prove the following inequalities:
(@ (1+x)*>1+axforalla > 1, x > -1 (Bernoulli’s inequality);
(b) e* > 1+xforallx € R;

(@) —

1+x
HINT: In all cases try to minimise the appropriate function.

<log(l+x) < xforallx > —1.

Exercise 4.4 Determine the number of solutions of the following equa-
tions in the specified domains:



Exercises

(i) ¥’ +4x =3inR; (iv) sinx = 2x — 1in R;
(i) x> =5x —6in R; (v) x* =2in[1, o);
(iii) x*-4x®=1inR; (vi) x2 =1log 1 in (1, ).

HINT: In order to cross the x-axis twice, a differentiable function f has
to first increase and then decrease (or vice versa). This means that its
derivative has to be zero at a point ¢ between any two roots.

Exercise 4.5 Calculate the Taylor polynomial Py (x) for f(x) = 1+x®sin x.
Given the result, does f have a local maximum, minimum or inflection
point at x = 0?

Exercise 4.6 Prove that if f and g are twice differentiable, convex func-
tions, and f is increasing, then i = f o g is convex.

Exercise 4.7 Discuss the convexity of the following functions:
(@) fx) = (x = 2)x*3;
(if) f(x) = |xlel;
(iii) f(x) = log(x? — 6x +8).
Exercise 4.8

(i) Sketch the graph of the function f(x) = x + log|x? — 1|.

(ii) Based on the previous graph, plot function g(x) = |x| +log |x? — 1]
and h(x) = |x + log [x? - 1]|.

Exercise 4.9 Sketch a plot of the following functions:

(i) f(x)=e"sinx; () F(x) = log[(x - 1)(x - 2)];
(i) f(x)=Vx2-1-1; (i) Fx) = : e* -
(iii) f(x) = xe'/ ) x(x —
(iv) f(x) = x%e¥; (xii) f(x)=2sinx + cos2x;
' -2
V) f(x) = (x =230 (i) fx) = =i
vi) f(x)=(x* —1)log(1+;c), (xiv) f(x)zm;
(vii) f(x) = vV [0 = 15
8% 2x
-1 (xvi) f(x) = —
(viii) f(x) = x21/+ 1 (xvii) f(x) = e sinx;
(09 f(x) = i) f(x) = ¥ sin —.

Exercise 4.10 Draw the graph of the following functions:

(i) f(x)= mim{loglx3 -3, log|x +3|};

1
(”)f”_|x| T

1
(iff) f(x) = 1+|x| 1+|x—a|'

(V) f(x) = xVa?— 1;

(a >0);

39
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(v) f(x) = arctanlog|x? —1|;

2x
i = 2 arct; + i .
(vi) f(x) arctan x + arcsin (1 2 )



Integration

Integration is a device that was invented to calculate areas of figures
limited by curved sides. The idea can be traced back at least to Archimedes.
He is well known —among many other things— for calculating the area
of a circle of unit diameter, A, in terms of its perimeter, 7, obtaining
the celebrated formula A = n/4. He did that by using two sequence
of polygons, both circumscribed to and inscribed in the circumference,
and then taking the limit of the number of sides going to infinity (see
Figure 5.1).

OO0

5.1 The Definite Integral

A similar idea was employed to obtain the area under more complicated
curves. If we define a signed area as in Figure 5.2(a) (i.e., it adds if
f(x) > 0 and substracts if f(x) < 0), the problem is how to calculate
the total area enclosed by a curved within a given interval. Following
Archimedes, one way to estimate that area is to approximate it as a sum
of rectangles, as in Figure 5.2(b). In the limit when the width of these
rectangles goes to zero we obtain the value of the seeked area.

) yy

(a)

Example 5.1.1 As an example of this procedure, let us calculate, using
this method, the area below the curve f(x) = x? within the interval
[0, a]. To do that, we divide the interval in # rectangles of width a/n
and heights (ak/ n)?, withk =1,2,...,n. The areas of these rectangles
will then be a®k? /n®. This yields the following approximation to the

Figure 5.1: Archimedes’s construction to
obtain the relation between the area and
the perimeter of a circle.

Figure 5.2: (a) Area “under” a curve: above
the X axis area has a positive sign and
below the X axis has a negative sign. (b)
Approximations to that area as sums of
thiner and thiner rectangles.



area:
3 2.3 2.3 2.3 3
_a 2°a°  3“a nca’ a5, 5
An_ﬁ+?+?+"‘+7_ﬁ(l +2 +"'+1’l).
It is a know result that
nn+1)2n +1
12+22+...+n2zwr
6
thus
snn+1)2n+1)  a®(2n® +3n? +n)
A,=a = .
6n3 6ns
Therefore
3 3 3 3
. . a a a a
A—J%An—iiﬂo(§+g+@)—§

is the area we are seeking.

What we have found in the previous example is called the Riemann
integral, because it was Riemann who developed this approach. Rie-
mann’s theory deals with more general partitions of a given interval,
and not only on equidistant ones, but we will not see that here. So, as
before, assume we divide the interval [a, b] in n segments, each of width
(b —a)/n. Then,

Definition 5.1.1 (Definite integral) Let the points xg = a < X1 < X2 <
X3 < -++ < x, = b divide the interval [a,b] into n even subintervals, of
width w = b%“ The definite integral of f from a to b is

b
[ e = tim (£ + fa) + flaa) 4o+ flru)

n-1
= lim Zf(xk)w

If the limit exists, then f is said to be (Riemann) integrable on the interval

[a,b].

. o . b . .
It is customary to use Leibniz’s notation fa f(x) dx which reminds the

definition of the integral as a sum (hence the sign f ) of the areas of
rectagles of with dx and height f(x), foralla < x < b.

We have seen that this limit exists for f(x) = x?. What other functions
are integrable?

Theorem 5.1.1 If f is continuous in [a, b] then it is integrable in [a, b].

The idea of the proof of this result is that continuous functions have
the property that the difference between their maximum and minimum
values in a closed interval is smaller the smaller the interval.

The class of functions that are Riemann integrable is quite a bit larger
than the set of continuous functions; for instance, monotonous functions
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are integrable, but also functions that are both bounded (so that there
exists an M < oo such that |f(x)] < M for all x over which we wish
to integrate) and piecewise continuous (continuous except for a finite
number of discontinuities) are integrable. We will be concerned primarily
with continuous functions in this text; knowing that continuous functions
are Riemann integrable will therefore suffice for the most part.

Geometric interpretation of the integral

The geometric interpretation of the integral is straightforward: a definite
integral can thus be interpreted as a difference of areas. If A, denotes the
total area of the region above the x-axis and below the graph of f (where
f = 0) and A_ denotes the total area of the region below the x-axis and
above the graph of f (where f < 0), then

b
/ fx)dx =A, - A_.

Example 5.1.2 Find the value of fozn sin x dx by interpreting it as the
signed area of an appropriately chosen region.

The function f(x) = sin x is symmetric about x = 7. It follows from
this symmetry that the area of the region below the graph of f and
above the x-axis between 0 and 7 (denoted by A, ) is the same as the
area of the region above the graph of f and below the x-axis between
7t and 27 (denoted by A_). Therefore, A, = A_ and

27
/ sinxdx=A, —-A_=0.
0

5.2 Properties of the integral

Theorem 5.2.1 Let f and g be two integrable functions in [a, b]. Then the
following properties hold:

b b b
(i)/(af+ﬁg)=a/ f+ﬁ/ Qforalla,peR linearity

b b
(ii) / f< / g whenever f < g ina,b] boundedness
a a 5
[

b
A consequence of (ii) is that if f > 0 then / f=0.
a

b
(iii) | f| is integrable in [a, b] and < / Wl absolute
a

integrability

Another consequence is that if M = sup f(x) and m = inf f(x),
xe[a,b] XE[ll,b]
then

b
m—a) < / f<M@®-a). (5.1)
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5 Integration

Theorem 5.2.2 (Interval additivity) Given a < b < c, function f is
integrable in [a, c] if and only if it is integrable in [a, b] and [b, c]. Besides

/acf=/abf+/bcf~ 652

Notice that this formula implies

/ubf=/acf—[f,

so interval additivity will be preserved beyond the constrainta < b < ¢

if we define ,
[r=-]r 59

Example 5.2.1 Show that

T
OS/ sinxdx <1
0

Note that 0 < sinx < 1 for x € [0, 7t]. Using Property (6), we find that

T
/ sinx dx > 0.
0

Using the properties of the integrals, we obtain

/n sinx dx < (1)(n) = 7.
0

5.3 The Fundamental Theorem of Calculus

The basic idea of the connection between integrals and derivatives —the
essence of the fundamental theorem of calculus— is this. Let us denote
A(x) the (signed) area between the X axis and the function f within the
interval [a, x]. Suppose that we increase the inverval by a very small
amount /. In practical terms, we are enlarging the area by adding almost
a rectangle of width & and height ~ f(x). In other words,

Alx + ) — A(x)

Alx+h)= A(x) + f(x)h = f(x) = p

If we now take the limit # — 0 we obtain the connection A’(x) = f(x).
This is the basic result that both Newton and Leibniz were aware of and
which renders calculus such a powerful tool. The rigorous statement is
as follows:

Theorem 5.3.1 (First fundamental theorem of calculus) If f is continuous

ina,b] then F(x) = /xf(t) dt is differentiable in (a, b) and F'(x) = f(x).
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The take-home message of this theorem is that integrals of functions are
primitives of those functions. Here is the connection between differentia-
tion and integration. From now on, calculating the area between the X
axis and a given curve f(x)is as simple as finding the right anti-derivative
(also called primitive) of f. Actually, the problem is even easier: any
primitive will do, because of this second version of the fundamental
theorem of calculus:

Theorem 5.3.2 (Second fundamental theorem of calculus (Barrow’s
rule)) If f is continuous in [a, b] and G is any primitive of f in (a,b), then

b
/ f(x)dx = G(b) — G(a).

Example 5.3.1 Evaluate

2
/ (x? = 3x) dx.
-1

Solution: Note that f(x) = x* —3x is continuous on [—1, 2]. We need to
find an antiderivative of f(x) = x? — 3x; for instance, F(x) = %x3 —3x2
is an antiderivative of f(x) since F’(x) = f(x). We then must evaluate

F(2) — F(-1):
1 3 8 -10
FQ==-22--.22=--6=—,
@ 3 2 3 3
1 3 -1 3 -11
F(-1)==-(-1)=-2-(-1)* = — - = —.
(D=3 (1P-3-(1P=F-2==
We find that
-10 -11 -9 -32 -16
F2)-F(-))=—-|—|=—=— = —.
@ -FC) == (6) 6 6 3
Therefore,

/ (% _ 35)dx = F(2) - F(<1) = ‘716
-1

Table 5.1 shows some basic primitives that will be useful for our calcula-
tions.

Here are some important additional special cases:

/ a+l
[ oS wroglgtiee, [ g@isra= ST, asa,
(5.4)
/ ﬂ dx = arctan g(x) + ¢ ﬂ dx = arcsin g(x) + c.
1+ (P ) imsor

(5.5)
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f(x) F(x) fx)  F(x) f(x) F(x)

anrl 1
X% (a# -1) sin x —Cos X 5 arctan x
a+1 1+x
1 . 1 .
X log | x| cosx  sinx arcsin x
V1 - x2
X X : 1
e e sinhx coshx 5 tanx
cos? x
X a* . 1
a coshx sinhx 5 tanh x
loga cosh” x

”

Remark 5.3.1 Often primitives are referred to as “indefinite integrals

b
and denoted / f(x) dx, whereas integrals of the form / f(x)dx are
a

called “definite integrals”.

Corollary 5.3.3 If f is continuous in [a, b] and g1, g are differentiable in
(a,b) then

£2(%)
H(x) = / ) F(t)dt (5.6)
F48

(x

is also differentiable in (a, b) and

H'(x) = f(82(x)) 85(x) = f(g1(x)) &1 (x)- (5.7)

Example 5.3.2 If

5]

X
F(x):/ cos t dt,
0

then F’(x) = 3x% cos(x3).

Applying Barrow’s rule we can obtain particular versions of the integra-

tion by parts and change of variable theorems:

Theorem 5.3.4 (Integration by parts) If f and g are two differentiable
functions in (a,b), then

b b b
[ g =] - [ Fwswas 69

The symbol in the right-hand side is a short-hand for

b
f@R@)| = Fb)20) - f@g@). (59)

Theorem 5.3.5 (Change of variable) If ¢ is continuous in [a,b] and
differentiable in (a,b), and f is continuous in g([a, b)), then

g(b) b
/ f(u)du = / f(g(x))g’(x)dx. (5.10)
g(a) a

a
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Table 5.1: Primitives F(x) of some elemen-
tary functions f(x) (up to the additive con-
stant) as obtained by reversing Table 2.1.
Herea € R,a > 0.



Example 5.3.3 Let us calculate the area of a circle of radius 4. The
equation of its circumference is x* + y* = a2, from which we obtain
y = £Va? — x2. Clearly the area between the X axis and the function
f(x) = Va? — x? within the interval [—a, a] is half the area we want to
calculate, therefore

a
A:2/ Va2 — x2dx.
—a

dx
We can introduce the variable f = x/a, or x = at, so that s =g, and
thelimitsx = —a — t=-landx=a — t = 1. Thus

1 1
A=2/ Vaz—aztzudt:2a2/ V1 — t2dt.
-1 -1

Let us now introduce a second change of variable: ¢ = sin 6. Then

ar = cos 0,and thelimitst = -1 —» 0 = —t/2andt =1 — 0 = 7t/2.

The integral then becomes

/2 /2
A :2112/ cos? 0 d6 :112/ (1+ cos26)do
—7/2 -7/2

/2
) — 2.

—7/2

1
= az(n + 3 sin26

=0

5.4 Applications of the integral

Cumulative change

Consider a population whose size at time £, ¢ > 0, is N(t) and that grows
at arate r(t). Referring back to interpretations of the derivative in Section
2.2, we can say that:

dN

— =r(t 511

=) (511
because dd—lf is the rate of growth of the population represented using
derivatives. Using the Fundamental Theorem of Calculus, we can see

that, since N (t) is an antiderivative of the function r(t),

t
N(t) = / r(s)ds +C (5.12)
0

for some constant C. (We choose 0 as the lower limit of integration for
convenience—the lower limit is arbitrary, and any value could be used.)
If we know the function r(f), then (5.12) can be used to calculate N(t),
but this only gives us N(¢) up to an unknown constant C. To calculate C,
we need to know the value of N(t) at a specific time; that is, we need an
initial condition. The initial condition, say N(0) = Ny for some known
value of Ny, and the differential equation (5.11) together make an initial
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value problem

d—N =r(t) and N(0)= Ny
dt
whose solution is: ,
N(t) = / r(s)ds + Nj. (5.13)
0

Example 5.4.1 A population grows at rate () = t?/2 and at time t = 0
contains 200 individuals. Find the size of the population (number of
individuals) as a function of time.

Let N(t) represent the size of the population at time t. Then we are
given that

dN 1,
=t
dt 2
and
N(0) = 200.

We can solve this initial value problem using (5.13):
‘1
N(t) = / ~s2ds + 200
0 2

1
= ~+3 +200.
6

Averages

To find the average value of a function between two points a and b,
we can take samples of the function at equal distances. To formulate
this notation mathematically, we evenly divide [a, b] using n + 1 points:
a=xp<x;<xp<---<x, = b with each pair of points separated by
a distance w = b%“ (thatis, xx — xx1 = w for k =1,2,...,n). We then
measure the concentration at the right extreme of the interval, that is, at
X1,X2,...,%xy. The average value of f is then

F = 2 (f0e) + fla) 4o+ fn)

This is similar to our equation for the integral, defined in Section 5.1
using sums. If we multiply and divide by w = (b — a)/n, we have

F = e fa) e f) = o fn) o)+ fx),

since wn = b — a. When n — oo the product on the right becomes an
integral (see 5.1.1) and:

_ b
Fegms [

That is, the average concentration can be expressed as an integral over
c(x) between a and b, divided by the length of the interval [a, b]:
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Definition 5.4.1 (Average Value of a Function) Assume that f(x) is a
continuous function on [a, b). The average value of f on the interval [a, b] is

b
Feyms | fox

Example 5.4.2 Rainfall in Los Angeles varies seasonally, with most
rain occurring at the beginning and end of the year. We might model
this seasonal variation using the following formula for the monthly
precipitation (in inches/month):

p(t) = 1.6 + 1.6 cos(2mt)

where t is the fraction of the year elapsed since January 1, so t = 0 is
January 1, t = 0.5 is exactly halfway through the year (which turns out
to be July 2), t = 0.75 is three- quarters of the way through the year
(which turns out to be October 1). What is the average monthly rainfall
in one year?

We use the definition of average usgin integrals:

1 1
P = —/ (1.6 + 1.6 cos(27t)) dt
1-0J,

1 1
= 1.6/ dt + 1.6/ cos(2mtt) dt
0 0

sin(27tt) !

=16+1.6
21

0

Since sin(0) = sin(27) = 0, we have

P=1.6.
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Exercises

Exercises

Exercise 5.1

a
(a) Prove thatif f is odd then / f(x)dx =0.
—a

(b) Prove thatif f is even then / flx)dx = 2/ f(x)dx.
a 0

10
(c) Calculate the integral / sin (sin ((x - 8)3)) dx.
6

Exercise 5.2 Approximate the following integrals using # equal subin-
tervals:

(a) /_ 11(1 — x?) dx with n = 5 subintervals.
(b) f_ 21 e dx with n = 3 subintervals.

(c) /On sin x dx with n = 4 subintervals.

In all cases, compare the result with the exact one.

Exercise 5.3 Use an area formula from geometry to find the value of
each integral by interpreting it as the (signed) area under the graph of an
appropriately chosen function.

@ [ [xldx

®) [Vo—x2dx
© (3 -4dx
) [2@~I|x])dx

X
Exercise 5.4 Calculate F(x) = / f(t)dt, with -1 < x < 1, for the
-1

following functions:

@) fx)=lx-1/2; ) Fo) = 1, -1<x<0,
(ii)f(x)={_1’ “hEx<l Clrrn 0<xsy
1

;o 0=x<l 1+x, -1<x<-1

<-1
2 —J1 1 1
X2, ~1<x<0, ={1 -1 1

(i) f(x) =1, RS
x—-1, 0<x<1; 1-x, 55x<1;

Exercise 5.5 Calculate the derivative of the following functions:
X3 et

o F0= [ S

o2

3

oot
i) Fo)= [ ———;
1) F) [9&3 1+sin?t
(iii) F(x) = / x?f(t) dt, with f continuous in R;
0

Exercise 5.6 Find the absolute maximum and minimum in the interval
[1, 00) of the function

f(x)= '/OX_1 (e_"‘2 -~ e‘Zt) dt.
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HINT: lim fox e~ dt = /2.
X—00

Exercise 5.7 Prove that the equation

* 2
/ e dt=1
0

has a unique solution in R and that it can be found in the interval (0, 1).

Exercise 5.8 Let f(x) be a continuous function such that f(x) > 0 for all
0 < x <1, and consider the function

x 1
F(x)=2 /O Jore / F(t)dt.

Determine how many solutions the equation F(x) = 0 has in [0, 1].

X
Determine, without computing

Exercise 5.9 Let f(x) = /

2 442"
—1/x @ +t
the integral, for which values of 4 the function f is constant.

Exercise 5.10

(a) Use the change of variable t = sin” 0 to calculate the integral

1
/ arcsin Vt dt.
0

(b) Consider the function

2

sin® x cos? x
flx) = / arcsin Vt dt + / arccos Vt dt.
0 0

Prove that f(x) = ¢, a constant, in the interval [0, 71/2].
(c) Determine the value of the constant c.

Exercise 5.11 Let f : [-1,1] — R be any integrable function.

(a) Prove that

/Onxf(sinx)dx = g/onf(sinx)dx.

Hint: Do the change of variables y = 7 — x.
(b) Calculate the integral
bid .
/ xsinx
o 1+cos?x

Exercise 5.12 Consider a population whose size at time t is N(t) and
whose growth obeys the initial-value problem

N _
dar
with N(0) = 100.

(a) Find N(t) by solving the initial-value problem.
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(b) Compute the cumulative change in population size between t = 0
and t = 5.

Exercise 5.13 A particle moves along the x-axis with velocity
o(t) = —(t -2 +1

for 0 < t < 5. Assume that the particle is at the origin at time 0.

(a) Use the graph of v(t) to determine when the particle moves to the
left and when it moves to the right.

(b) Find the location s(t) of the particle at time ¢ for 0 < t < 5. Give a
geometric interpretation of s(t) in terms of the graph of v(f).

Exercise 5.14 The average daily temperature (measured in Fahrenheit)
in New York City can be approximated by the following function of the
time of year t. (Here, t measures the fraction of the year that has elapsed
since January 1.)

T(t) = 57.5 —22.5 cos(2mt).

(a) What is the average daily temperature averaged over the course of
one year?

(b) Explain how you could get your answer in part (b) without doing
any integrations.

(c) What is the average summer temperature? You may assume that
summer corresponds to the interval 0.47 < ¢t < 0.73. You will need
to use a calculator to evaluate your answer.

Exercises
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Differential Equations

We have already seen some examples of differential equations. In this
chapter we will learn how to study them in more depth.

We will start with differential equations of the form:

£= 2 f()

Here x(t) is a real-valued function of time ¢, and f(x) is a smooth real-
valued function of x.!" We'll call such equations one-dimensional or
first-order systems.

We will not allow f to depend explicitly on time. Time-dependent or
"nonautonomous" equations of the form % = f(x, t) are more compli-
cated, because one needs two pieces of information, x and ¢, to predict
the future state of the system.

6.1 Exponential Growth

We will start with the equation for exponential growth, that we derived

in Section 2.2: N
N - = = 7N .].

where r is the per capita growth rate of the population.

This differential equation is called separable because we can put all the
terms that are functions of N only on one side, and all the terms that are
functions of t on the other. We can then integrate both sides:

[ [

A primitive for the left-hand side is log N, and so we have

logN(t) =rt +C = N(t) = Ce"".

Now, in order to know the value of C we have to impose additional
information.? In many cases, this additional information is the value of
N(t) at t = 0, which we call N(0) = Np. A differential equation plus an
initial condition is usually called an initial value problem. In order to do
this, we take t = 0 in the solution and solve for C:

N(©)=Ce™® = C =N,.
Finally, the solution to the initial value problem is
N(t) = Npe'* (6.2)

If r > 0, the population grows exponentially without stop. However,
if r < 0 the population decays exponentially until it gets to 0. We say

1: Note that in this chapter we have
switched our notation for the derivative
with respect to ¢ to X, which is standard in
books on dynamical systems.

2: Because infinitely many functions have
the same derivative rN.



that N = 0 is a fixed point of the system because N(0) = 0. That is, the
derivative does not change, and therefore the system remains in the same
position forever. If r > 0, the population goes away from the fixed point,
but if r < 0 it goes towards it.3

How can we understand the behavior of the system in general? Do we
always need to find the solution of the differential equation?

6.2 A Geometric Way of Thinking

Pictures are often more helpful than formulas for analyzing nonlinear
systems. Here we illustrate this point by a simple example. Along the
way we will introduce one of the most basic techniques of dynamics:
interpreting a differential equation as a vector field.*

Consider the following nonlinear differential equation:
X =sinx. (6.3)

To emphasize our point about formulas versus pictures, we have chosen
one of the few nonlinear equations that can be solved in closed form.
This differential equation is also separable, and so we can put all the
terms that are functions of x only on one side, and all the terms that are
functions of t on the other. We can then integrate both sides:

[ [,
dt sinx

which implies (you can look up the integral in a table)

t = —log|cscx +cotx| + C
To evaluate the constant C, suppose that x = xg at ¢ = 0. Then
C =1In(cscxg + cotxp) .
Hence the solution is

tzln(cscxo+c0tx0) (6.4)

cscx +cotx

This result is exact, but a headache to interpret. For example, can you
answer the following questions?

1. Suppose xg = %; describe the qualitative features of the solution
x(t) for all t > 0. In particular, what happens as t — co?

2. For an arbitrary initial condition xo, what is the behavior of x(¢) as
t — 00?

Think about these questions for a while, to see that formula (6.4) is not
transparent. In contrast, a graphical analysis of (6.3) is clear and simple,
as shown in Figure 6.1. We think of ¢ as time, x as the position of an
imaginary particle moving along the real line, and % as the velocity of
that particle. Then the differential equation x = sin x represents a vector
field on the line: it dictates the velocity vector X at each x. To sketch the
vector field, it is convenient to plot X versus x, and then draw arrows on
the x-axis to indicate the corresponding velocity vector at each x. The
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3: If r = 0 the population stays constant
at No, because the derivative 7N is always
0.

4: We haven't introduced vectors yet, but
perhaps you have seen them as “arrows”
in high-school math. That idea will do for
now.



arrows point to the right when x > 0 and to the left when x < 0. This
picture is often called phase protrait.

2.0
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Here’s a more physical way to think about the vector field: imagine that
fluid is flowing steadily along the x-axis with a velocity that varies from
place to place, according to the rule * = sinx. As shown in Figure 6.1,
the flow is to the right when x > 0 and to the left when x < 0. At points
where X = 0, there is no flow; such points are therefore called fixed points.
You can see that there are two kinds of fixed points in Figure 6.1: solid
black dots represent stable fixed points (often called attractors or sinks,
because the flow is toward them) and open circles represent unstable
fixed points (also known as repellers or sources).

Armed with this picture, we can now easily understand the solutions to
the differential equation X = sin x. We just start our imaginary particle at
xo and watch how it is carried along by the flow.

This approach allows us to answer the questions above as follows:

1. Figure 6.1 shows that a particle starting at xo = 7 moves to the
right faster and faster until it crosses x = 7 (where sin x reaches its
maximum). Then the particle starts slowing down and eventually
approaches the stable fixed point x = 1t from the left. Thus, the
qualitative form of the solution is as shown in Figure 6.2. Note
that the curve is convex at first, and then concave; this corresponds
to the initial acceleration for x < 7 followed by the deceleration
toward x = 7.

2. The same reasoning applies to any initial condition x¢. Figure 6.1
shows that if x > 0 initially, the particle heads to the right and
asymptotically approaches the nearest stable fixed point. Similarly,
if x < 0 initially, the particle approaches the nearest stable fixed
point to its left. If x = 0, then x remains constant.

A picture can't tell us certain quantitative things: for instance, we don’t
know the time at which the speed x is greatest. But in many cases
qualitative information is what we care about, and then pictures are
fine.
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Figure 6.1: Phase protrait of the differen-
tial equation & = sin x, showing the fixed
points (stable in black, unstable in white)
and the direction of the flow.

0 1 2 3 4 5
t

Figure 6.2: Solution of the differential
equation X = sin x with initial condition
x(0) = m/4.



6.3 Fixed Points and Stability

The appearance of the phase portrait is controlled by the fixed points x~,
defined by f(x*) = 0; they correspond to stagnation points of the flow.
In Figure 6.1, the solid black dot is a stable fixed point (the local flow is
toward it) and the open dot is an unstable fixed point (the flow is away

from it).

In terms of the original differential equation, fixed points represent equi-
librium solutions (sometimes called steady, constant, or rest solutions),
since if x = x” initially, then x(¢) = x* for all time. An equilibrium is
defined to be stable if all sufficiently small disturbances away from it
damp out in time. Thus stable equilibria are represented geometrically by
stable fixed points. Conversely, unstable equilibria, in which disturbances

grow in time, are represented by unstable fixed points.

Example 6.3.1 Find all fixed points for ¥ = x2 — 1, and classify their
stability.

Here f(x) = x? — 1. To find the fixed points, we set f(x*) = 0 and solve
for x*. Thus x* = 1. To determine stability, we plot x> — 1 and then
sketch the vector field. The flow is to the right where x> — 1 > 0 and to
the left where x2 —1 < 0. Thus x* = —1 is stable, and x* = 1 is unstable.

Note that the definition of stable equilibrium is based on small distur-
bances; certain large disturbances may fail to decay. Here, all small
disturbances to x* = —1 will decay, but a large disturbance that sends
X to the right of x = 1 will not decay—in fact, the phase point will be
repelled out to +00. To emphasize this aspect of stability, we sometimes
say that x* = —1 is locally stable, but not globally stable.

Example 6.3.2 Sketch the phase portrait corresponding to X = x —cos x,
and determine the stability of all the fixed points.

One approach would be to plot the function f(x) = x — cos x and then
sketch the associated vector field. This method is valid, but it requires
you to figure out what the graph of x — cos x looks like.

There’s an easier solution, which exploits the fact that we know how
to graph ¢ = x and y = cos x separately. We plot both graphs on the
same axes and then observe that they intersect in exactly one point (do
it!).

This intersection corresponds to a fixed point, since x* = cos x* and
therefore f(x*) = 0. Moreover, when the line lies above the cosine
curve, we have x > cos x and so & > 0: the flow is to the right. Similarly,
the flow is to the left where the line is below the cosine curve. Hence
x" is the only fixed point, and it is unstable. Note that we can classify
the stability of x*, even though we don’t have a formula for x* itself!
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6.4 Population Growth

The exponential growth seen in Equation (6.1) cannot go on forever. To
model the effects of overcrowding and limited resources, population
biologists and demographers often assume that the per capita growth
rate & ‘fi—];] decreases when N becomes sufficiently large. For small N, the
growth rate equals 7, just as before. However, for populations larger than
a certain carrying capacity K, the growth rate actually becomes negative;
the death rate is higher than the birth rate.

A mathematically convenient way to incorporate these ideas is to assume

that the per capita growth rate 3 il—];] decreases linearly with N.

This leads to the logistic equation first suggested to describe the growth
of human populations by Verhulst in 1838:

N =rN (1 - %) (6.5)

Proposed Exercise 6.4.1 Solve the differential equation (6.5) analyti-
cally, taking the initial condition N(0) = Ny. The following fact will be

useful:
1 1 1

NOI-N/K) N N-K

T T T T T T T
0 2 4 6 8 10 12

N

Let us use our graphical approach again. We plot N versus N to see what
the vector field looks like. Note that we plot only N > 0, since it makes
no sense to think about a negative population (Figure 6.3). Fixed points
occur at N* = 0 and N* = K, as found by setting N = 0 and solving for
N. By looking at the flow in Figure 6.3, we see that N* = 0 is an unstable
fixed point and N* = K is a stable fixed point. In biological terms, N = 0
is an unstable equilibrium: a small population will grow exponentially
fast and run away from N = 0. On the other hand, if N is disturbed
slightly from K, the disturbance will decay monotonically and N () — K
as t — co.In fact, all trajectories starting with N(0) > 0 will flow towards
K.

The only exception is if Ny = 0; then there’s nobody around to start
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Figure 6.3: Phase protrait of the differen-
tial equation N = rN(1 — N/K), showing
the fixed points (stable in black, unstable
in white) and the direction of the flow.



6 Differential Equations 58

reproducing, and so N = 0 for all time. (The model does not allow for
spontaneous generation!).

Figure 6.3 also allows us to deduce the qualitative shape of the solutions.
For example, if Ny < %, the phase point moves faster and faster until it
crosses N = %, where the parabola in Figure 6.3 reaches its maximum.
Then the phase point slows down and eventually creeps toward N = K.
In biological terms, this means that the population initially grows in an
accelerating fashion, and the graph of N (t) is convex. But after N = %, the
derivative N begins to decrease, and so N (t) is concave as it asymptotes
to the horizontal line N = K (Figure 6.4).

Thus the graph of N(t) is S-shaped or sigmoid for Ny < £.

Something qualitatively different occurs if the initial condition Ny lies T .
between % and K; now the solutions are decelerating from the start. = /
Hence these solutions are concave for all . If the population initially :
exceeds the carrying capacity (Ng > K), then N(t) decreases toward 0

N = K and is convex. Finally, if Ny = 0 or Ny = K, then the population

stays constant. Figure 6.4: Trajectories of the logistic equa-
tion starting at different initial values.

6.5 Linear Stability Analysis

So far we have relied on graphical methods to determine the stability
of fixed points. Frequently one would like to have a more quantitative
measure of stability, such as the rate of decay to a stable fixed point. This
sort of information may be obtained by linearizing about a fixed point,
as we now explain.

Let x* be a fixed point, and let q(¢) = x(t) — x* be a small perturbation
away from x*. To see whether the perturbation grows or decays, we
derive a differential equation for g. Differentiation yields

q=x=f(x(t)) = f(x"+q(t)).

Now using Taylor’s expansion we obtain

fQ+q) = f(x") + f/(x")g +o(q),

where 0(q) denotes quadratically small terms in 4. Finally, note that
f(x*) = 0since x™ is a fixed point. Hence

q=f'(x")q +o(q).

Now if f’(x*) # 0, the o(g) terms are negligible and we may write the
approximation
g~ f'(x")g.

This is a linear equation in g, and is called the linearization about x*.
It shows that the perturbation 4(f) grows exponentially if f’(x*) > 0
and decays if f/(x*) < 0.If f’(x*) = 0, the 0(q) terms are not negligible
and a nonlinear analysis is needed to determine stability, as discussed
in Example 6.5.3 below. The upshot is that the slope f’(x*) at the fixed
point determines its stability. If you look back at the earlier examples,
you'll see that the slope was always negative at a stable fixed point. The



importance of the sign of f’(x*) was clear from our graphical approach;
the new feature is that now we have a measure of how stable a fixed point
is—that’s determined by the magnitude of f’(x*). This magnitude plays

the role of an exponential growth or decay rate. Its reciprocal 1/| f/(x*)|

is a characteristic time scale; it determines the time required for x(t) to

vary significantly in the neighborhood of x*.

Example 6.5.1 Using linear stability analysis, determine the stability
of the fixed points for
X =sinx.

The fixed points occur where f(x) = sinx = 0. Thus x* = kn, where k
is an integer. Then

1, keven

4 * = k =
f(x") = coskm {—1, K odd

Hence x* is unstable if k is even and stable if k is odd. This agrees with
the results shown in Figure 6.1.

Example 6.5.2 Classify the fixed points of the logistic equation, using
linear stability analysis, and find the characteristic time scale in each
case.

Here f(N) =rN (1 - %), with fixed points N* = 0 and N* = K. Then
2N
ron=rf1-3),
and so f’(0) = r and f’(K) = —r. Hence N* = 0is unstable and N* = K

is stable, as found earlier by graphical arguments. In either case, the
characteristic time scale is 1/| f"(N*)| = 1/r.

Example 6.5.3 If f’(x*) = 0 nothing can be said about the stability of a
fixed point in general. The stability is best determined on a case-by-case
basis, using graphical methods. Consider the following examples:

3

a
b

C
(d) x

Each of these systems has a fixed point x* = 0 with f’(x*) = 0. However
the stability is different in each case. We can see graphically (Figure 6.5)
that (a) is stable and (b) is unstable. Case (c) is a hybrid case we’ll call
half-stable, since the fixed point is attracting from the left and repelling
from the right. We therefore indicate this type of fixed point by a
half-filled circle. Case (d) is a whole line of fixed points; perturbations
neither grow nor decay.

—_~ o~

—X
3
2

2R R
1l

—~
~ — —

X
X
0
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@x=-x> b)x=x3
\ y
AN /
) x=x2 (d)x=0
\ /
\\\ ///

Figure 6.5: Stability of fixed points for
differential equations where f’(x*) = 0.



Exercises

Exercise 6.1 Analyze the following equations graphically. In each case,
sketch the vector field on the real line, find all the fixed points, classify
their stability, and sketch the graph of x(t) for different initial conditions.

(@) ¥ =4x*>-16

b) x=1-xM
() x=x—-x°
(d) ¥ =efsinx
(e) X =14cosx

(f) ¥ =1—e5*
(g) x =e* —cosx

Hint: In (g) sketch the graphs of e and cos x on the same axes, and look
for intersections. You won't be able to find the fixed points explicitly, but
you can still find the qualitative behavior.

Exercise 6.2 The velocity v(t) of a skydiver falling to the ground is
governed by
mo =mg — kv?,

where m is the mass of the skydiver, g is the acceleration due to gravity,
and k > 0 is a constant related to the amount of air resistance.

(a) It can be shown that the analytical solution for v(t), assuming that

0(0) = 0, is
( ) 1 —e —21/gk/mt
) = ,/
1+e72 Vskimt

Find the limit of v(t) as t — oo. This limiting velocity is called the
terminal velocity.

(b) Give a graphical analysis of this problem, and thereby re-derive a
formula for the terminal velocity.

Exercise 6.3 Consider the model chemical reaction

k1
A+ X = 2X,
k1

in which one molecule of X combines with one molecule of A to form
two molecules of X. This means that the chemical X stimulates its own
production, a process called autocatalysis. This positive feedback process
leads to a chain reaction, which eventually is limited by a "back reaction"
in which 2X returns to A + X. According to the law of mass action of
chemical kinetics, the rate of an elementary reaction is proportional
to the product of the concentrations of the reactants. We denote the
concentrations by lowercase letters x = [X] and a = [A]. Assume that
there’s an enormous surplus of chemical A, so that its concentration a
can be regarded as constant. Then the equation for the kinetics of x is

% = kyax — k_1x2,

where ki and k_; are positive parameters called rate constants.

(a) Find all the fixed points of this equation and classify their stability.

(b) Sketch the graph of x(t) for various initial values xj.

Exercises
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Exercise 6.4 The growth of cancerous tumors can be modeled by the
Gompertz law
N = —aN log(bN),

where N(t) is proportional to the number of cells in the tumor, and
a,b > 0 are parameters.

(a) Interpret a and b biologically.

(b) Sketch the vector field and then graph N(t) for various initial
values.

(c) Using linear stability analysis, classify the fixed points of the model.

Exercise 6.5 For certain species of organisms, the per capita growth
rate % is highest at intermediate N. This is called the Allee effect. For
example, imagine that it is too hard to find mates when N is very small,
and there is too much competition for food and other resources when N
is large. One way to model this is to use

%:r—a(N—b)z, a,b,r>0.

(a) Draw the per capita growth rate for this system, and dicuss how
the behavior will change depending on whether the intercept (the
value of N/N when N = 0) is positive or negative.

(b) Find all the fixed points of the system and classify their stability
using linear stability analysis. Discuss how the value of the intercept
affects the stability of the fixed points.

(c) Sketch the solutions N (t) for different initial conditions.

(d) Compare the solutions N(t) to those found for the logistic equation
N = rN(1 — N/K). What are the qualitative differences, if any?

Exercise 6.6 Use linear stability analysis to classify the fixed points of
the following systems. If linear stability analysis fails because f’(x*) = 0,
use a graphical argument to decide the stability.

@) x=x(1-x)

(b) x =—-x(1-2x)

(¢c) x =tanx

(d) % =x%(6-x?)

() x=1-¢7"*

(f) x =logx

(g) x=ax - x3, where a can be positive, negative, or zero. Discuss all
three cases.

Exercises
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PART II. LINEAR ALGEBRA



Linear Functions of Several
Variables

In this chapter we will take the first steps toward extending the methods
of calculus from functions of a single variable to functions of multiple

variables (also called multivariate functions) and to systems of functions.

Our first step will be to consider an important class of multivariate
functions: functions that are linear in several variables. We will learn
how to solve equations involving these functions, and how to represent
the solutions graphically.

7.1 Linear Transformations

So far, we have seen functions of one variable that have as an output
another real number. However, in many real-world applications we will
deal with functions of several variables.

Example 7.1.1 The function f : R® — R? given by f(x,y,z) =
(x%+y?, 2xz) is a function of several variables, that takes three variables
as an input and outputs two variables. For instance, you can think
of this function as giving the temperature and humidity of a spatial
position in a room.

We call the elements of R"” vectors. Then, a function T from R" to R™
is a rule that assigns to each vector x = (x1,...,x,) in R" a vector
T(x) = (Ti(x), . .., T (x) in R™, The set R" is called the domain of T, and
R™ is called the codomain of T. The notation T : R” — R™ indicates
that the domain of T is R"” and the codomain is R™. For x in R”, the
vector T(x) in R™ is called the image of x (under the action of T). The set
of all images T'(x) is called the range of T.

There are two elementary operations we can do with vectors:
1. Sum: Given two vectors in R”, x = (x1,x2,...,%,) and y =

(1, Y2, .-, Yn), their sum is defined as

x+y=@1+y1, X2+ Y2, ..., Xn +Yn),

that is, we sum them component-wise.
2. Multiplication by a scalar: Given a vector x = (x1, X2, ..., X,) € R"
and a real number! ¢ € R, the multiplication of x by c is given by

cx = (cx1,¢x2,...,CXy),

that is, we perform the multiplication component-wise.

In this chapter we will focus on a special case of multivariable functions,
making use of these two elementary operations on vectors:

1: Also called a scalar in this context.
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Definition 7.1.1 (Linear Transformations) A function (also called trans-
formation or mapping in this context) T is linear if:

1. T(u+v)=T(u)+ T(v) forall u, v in the domain of T;
2. T(cu) = cT(u) for all scalars ¢ and all u in the domain of T.

As a consequence of the above definition, we have that if T is a linear
transformation, then
T(0) =0

and
T(cu+dv)=cT(u)+dT(v)

for all vectors u, v in the domain of T and all scalars ¢, d.2

Another way of writing this is that every linear transformation T can be
written as follows:

a11xX1 +apXxy + -+ aiuXxy
Tx)=T(x1,...,x,) = ..
Am1X1 + Ap2Xo + - + Ay Xy

7.2 Solutions of Linear Equations

Given a linear transformation T : R” — R, we may want to know if
the vector b = (b, ..., by) € R™ is in the range of T, that is: is there any
x for which T(x) = b? And if there is, how many different x map to the
same b?3

Those questions amount to solving a system of linear equations. A linear
equation in the variables x1, ..., x, is an equation that can be written in
the form

a1xX1 +axxo +---+a,x, =b

where b and the coefficients ay, ..., a, are real or complex numbers,
usually known in advance. The subscript n may be any positive integer.
In textbook examples and exercises, 1 is normally between 2 and 5. In
real-life problems, n might be 50 or 5000, or even larger.

A system of linear equations (or a linear system) is a collection of one or
more linear equations involving the same variables. In the case of our
linear transformation, for each component in the output vector b we have
one linear equation.

Example 7.2.1 Given the linear transformation T : R?> — R? given
by T(x1, X2, x3) = (2x1 + X2 — X3, X1 + 4x3), we may ask if the vector
b = (1,7) is in its image. This is the same as solving the system

2x1+x2—x3=1
X1 +4x3=7
A solution of the system is a list (s1,5S2,...,5,) of numbers that

makes each equation a true statement when the values sy, ..., s, are
substituted for x1, ..., x,, respectively. For instance, (7,—13,0) is a

2: Note that this means that the one-
variable function f(x) = 3x+5isnotlinear
according to this definition, although it de-
fines a line in the plane. In Linear Algebra,
we only deal with lines that pass through
zero.

3: You may be thinking that this is similar
to the questions of injectivity and surjec-
tivity that we saw for functions of one
variable. You're right, they are the same.
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solution of the system because, when these values are substituted in
for x1, x2, x3, respectively, the equations are satisfied.

So (1,7) is in the range of T

Note, however, that (3, —4, 1) is also a solution: T is not injective. Are
there more solutions to this system?

The set of all possible solutions is called the solution set of the linear
system. Two linear systems are called equivalent if they have the same
solution set. That is, each solution of the first system is a solution of the
second system, and each solution of the second system is a solution of
the first.

Example 7.2.2 Finding the solution set of a system of two linear
equations in two variables is easy because it amounts to finding the
intersection of two lines. A typical problem is

x1—x2=1

xX1+3x2,=9

The graphs of these equations are lines, which we denote by ¢; and /,.
A pair of numbers (x1, x») satisfies both equations in the system if and
only if the point (x1, x2) lies on both ¢; and ¢,. In the system above, the
solution is the single point (3, 2), as you can easily verify.

Of course, two lines need not intersect in a single point—they could be
parallel, or they could coincide and hence “intersect” at every point on
the line.

Proposed Exercise 7.2.1 Draw the graphs that correspond to the
following systems:
(@ x1+2x=1
X1 +2xp =3
b) x1+2x=1
2x1 +4x; =2

and discuss how many solutions they have.

Therefore, a system of linear equations has

1. no solution, or
2. exactly one solution, or
3. infinitely many solutions.

A system of linear equations is said to be consistent if it has either one
solution or infinitely many solutions; a system is inconsistent if it has no
solution.
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7.3 Matrix Notation for Systems of Linear
Equations

The essential information of a linear system can be recorded compactly
in a rectangular array called a matrix. Given the system

X1 —2x2+x3=0
2x1 - SX3 =8
5x3 =10
with the coefficients of each variable aligned in columns, the matrix
1 2 1
2 0 -8
0 0 5

is called the coefficient matrix of the system, and

12 1 0
2 0 -8 8
0 0 5 10

is called the augmented matrix of the system. (The second row here
contains a zero because the second equation could be written as 0 - x1 +
2x> —8x3 = 8. An augmented matrix of a system consists of the coefficient
matrix with an added column containing the constants from the right
sides of the equations.

The size of a matrix tells how many rows and columns it has. The
augmented matrix above has 3 rows and 4 columns and is called a 3 X 4
(read “3 by 4”) matrix. If m and n are positive integers, an m X n matrix
is a rectangular array of numbers with m rows and n columns. (The
number of rows always comes first.) Matrix notation will simplify the
calculations in the examples that follow.

7.4 Gaussian Elimination

Now we will describe an algorithm, or a systematic procedure, for
solving linear systems. The basic strategy is to replace one system with
an equivalent system (i.e., one with the same solution set) that is easier
to solve.

Roughly speaking, use the x; term in the first equation of a system to
eliminate the x; terms in the other equations. Then use the x; term in
the second equation to eliminate the x; terms in the other equations,
and so on, until you finally obtain a very simple equivalent system of
equations.

Three basic operations are used to simplify a linear system:

Definition 7.4.1 (Elementary Row Operations) The three elementary row
operations that can be used to simplify a linear system are
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1. Replacement: Replace one row by the sum of itself and a multiple of
another row.

2. Interchange: Interchange two rows.

3. Scaling: Multiply all entries in a row by a nonzero constant.

Row operations can be applied to any matrix, not merely to one that
arises as the augmented matrix of a linear system. Two matrices are
called row equivalent if there is a sequence of elementary row operations
that transforms one matrix into the other. It is important to note that
row operations are reversible. If two rows are interchanged, they can be
returned to their original positions by another interchange. If a row is
scaled by a nonzero constant ¢, then multiplying the new row by 1/c
produces the original row. Finally, consider a replacement operation
involving two rows—say, rows 1 and 2—and suppose that ¢ times row 1
is added to row 2 to produce a new row 2. To “reverse” this operation,
add c times row 1 to (new) row 2 and obtain the original row 2.

At the moment, we are interested in row operations on the augmented
matrix of a system of linear equations. Suppose a system is changed to a
new one via row operations. By considering each type of row operation,
you can see that any solution of the original system remains a solution of
the new system. Conversely, since the original system can be produced
via row operations on the new system, each solution of the new system
is also a solution of the original system. This discussion justifies the
following statement.

Theorem 7.4.1 If the augmented matrices of two linear systems are row
equivalent, then the two systems have the same solution set.

The algorithm is as follows:

Definition 7.4.2 (Gaussian Elimination) Gaussian row reduction is a
method used to solve systems of linear equations. The algorithm transforms
the augmented matrix of the system into an upper trianguler matrix (with
zeros below the diagonal) and, finally, into a unique reduced echelon form
where the first nonzero entry of each row is equal to 1and is the only nonzero
entry of its column. From this reduced echelon form it is very easy to read the
solutions of the system.

1. Form the Augmented Matrix:

» Write the augmented matrix of the system, which includes the
coefficients of the variables and the constants on the right-hand
side of the equations.

2. Forward Elimination:

» Begin with the leftmost nonzero column, which we call the pivot
column.

» Select a nonzero entry in the pivot column as the pivot. If
necessary, interchange rows to place this pivot at the top of the
current submatrix.

» Use the pivot to create zeros below it in the pivot column. Do this
by replacing each row below the pivot row with the sum of itself
and a suitable multiple of the pivot row.
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» Move to the next column to the right and repeat the process until
all columns containing nonzero elements have been processed.
The result is an upper triangular matrix (row echelon form).

3. Backward Substitution (for reduced echelon form):

» Start with the rightmost pivot and move to the left.

» Normalize the pivot row by dividing it by the pivot element to
make the pivot equal to 1.

» Use the pivot to create zeros above it in the pivot column. Do this
by replacing each row above the pivot row with the sum of itself
and a suitable multiple of the pivot row.

» Repeat this process for each pivot, moving from right to left, until
the matrix is in reduced row echelon form.

The row reduction algorithm leads directly to an explicit description
of the solution set of a linear system when the algorithm is applied to
the augmented matrix of the system. Suppose, for example, that the
augmented matrix of a linear system has been changed into the equivalent
echelon form
10 -5 1
01 1 4
00 0 O

There are three variables because the augmented matrix has four columns.

The associated system of equations is

Xl—SX3:1
Xo+x3=4
0=0

The variables x; and x; corresponding to pivot columns in the matrix are
called basic variables. The other variable, x3, is called a free variable.

Whenever a system is consistent, the solution set can be described
explicitly by solving the reduced system of equations for the basic
variables in terms of the free variables.

x1 =1+5x3
Xp = 4 — X3
x3 is free

The statement “x3 is free” means that you are free to choose any value for
x3. Once that is done, the formulas in (5) determine the values for x; and
X,. For instance, when x3 = 0, the solution is (1,4, 0); when x3 = 1, the
solution is (6, 3, 1). Each different choice of x3 determines a (different)
solution of the system, and every solution of the system is determined
by a choice of x3.

Example 7.4.1 Find the general solution of the linear system whose
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augmented matrix has been reduced to

1 6 2 5
2 4 0 10
0 2 8 1
0 0 0 1

The augmented matrix is not in upper triangular form, so We want
to make zeros in each pivot column. The row reduction is completed
next. The symbol ~ before a matrix indicates that the matrix is row
equivalent to the preceding matrix.

162 5\ (1 6 2 5 (16 25
2 40 10/ |0 -8 -4 0| (01 1 1
028 1| o 2 8 1/ foo 1 1
ooo0o 1/ \o o o 1 \oo o1

Now the system can be solved easily for the basic variables, by starting
from the bottom and back-substituting the values of the known vari-
ables in the upper equations. Note, however, that this system does not
have any solutions. Why is that?

Theorem 7.4.2 (Existence and Uniqueness Theorem) A linear system is
consistent if and only if the rightmost column of the augmented matrix is
not a pivot column—that is, if and only if an echelon form of the augmented
matrix has no row of the form

(0 0O --- 0 b)
with b nonzero.

If a linear system is consistent, then the solution set contains either

1. a unique solution, when there are no free variables, or
2. infinitely many solutions, when there is at least one free variable.
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Exercises

Exercise 7.1 Let T : R*? — R? be a linear transformation that maps
e; = (1,0) intoy; = (2,5) and maps e; = (0, 1) into y» = (-1, 6). Find the

. 5 X1
images of (3) and (Xz) .

Exercise 7.2 Solve the following systems of linear equations using
Gaussian elimination:

1 2x+y =6 x+y=-1

' x—4y =—4 5. 42x -y =7

, |5x+2y =8 x-2y=8

S |-x+3y=9 2x +z =4y -1
X—2y+Z:3 6. x+2y+9:3z
2x -3y +z=38 3x+2z=4-2y
2x-y=3 S5x—y+2z=6

4. 3x—y=4 7. 9x+2y—z=-1
x_3y:1 3X+2y—2221

Exercise 7.3 Find the general solutions of the systems whose augmented
matrices are given in:

1(1347) 1 -3 0 -1 0 -2
39 7 6 e |01 0 0 -4 -1
1 40 7 1o 0o 01 9 4
2'(27010) 0 0 0 0 1 0
01 -6 5 10 2 6
3'(1—27—6) o104
1 -2 -1 3 100 19
4'(3—6—22) 0000
3 —4 2 0 1 2 -5 -6 0 -5
5.(—9 12 -6 0 g |01 6 30 2
-6 8 -4 1 00 0 0 1 0
00 0 0 0 O

Exercise 7.4 Determine the value(s) of h such that the matrix is the
augmented matrix of a consistent linear system.

2 3 h 1 -3 -2
L (4 6 7) 2 (5 h —7)

Exercise 7.5 Choose h and k such that the system has (a) no solution,
(b) a unique solution, and (c) many solutions. Give separate answers for

each part.
1 X1+ hx, =2 5 xX1+3x,=2
. 4x1+8xr =k ’ 3x1+ hxy, =k

Exercise 7.6 Solve the following questions involving linear transforma-
tions:
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1. Let T : R? — R? be a linear transformation such that T(x1, xp) =
(x1 + xo,4x71 + 5x7). Find x such that T(x) = (3, 8).

2. Let T : R? — R3 be a linear transformation such that T(xq, x7) =
(x1 — 2x2, x1 + 3x2,3x1 — 2X2). Find x such that T(x) = (-1,4,9).



Matrix Algebra

8.1 Matrix Notation for Linear Transformations

a1 4w o din
a1 4 - Az | ) o

IfA=| . . . . |is an m X n matrix, and if x is in R", then
Am1l Am2 - Amn

the product of A and x, denoted by Ax, is the linear combination of the
columns of A using the corresponding entries in x as weights; that is,

an 4z 0 M X1
" a11x1 +apxy + -+ aiuXxy
a  dx  ccc o dop | X2
Ax =] . . . . .= :
Am1X1 + ApaXo + -+ -+ Ayn Xy
Am1  Am2  **° Amn) \Xn

Note that Ax is defined only if the number of columns of A equals the
number of entries in x.

This definition of matrix multiplication by a vector means that, given
a linear transformation T : R" — R™, for each x in R", T(x) can
be computed as Ax, where A is an m X n matrix. For simplicity, we
sometimes denote such a matrix transformation by x — Ax. Observe
that the domain of T is R"” when A has n columns and the codomain of
T is R™ when each column of A has m entries. The range of T is the set
of all linear combinations of the columns of A, because each image T(x)
is of the form Ax.

This means that every matrix defines a linear transformation, and that
every linear transformation can be written in matrix form. So, in practice,
the two mathematical objects are identical.

Example 8.1.1 Let

1 3 ) 1
A=|2 5], u=(_1), b=|2|, and c=
1 7 1

Q1 &= W

define a transformation T : R? — R3 by T(x) = Ax, so that

1 3 . X1 + 3xp
T(x)=Ax=|2 5 (1)= 2x1 + 512
1 2

7 X1+ 7x2

(a) Find T'(u), the image of u under the transformation T
(b) Find an x in R? whose image under T is b.
(c) Is there more than one x whose image under T is b?




(d) Determine if c is in the range of the transformation T
Solution:

(a) Compute

2

13 12) +3(-1)\ (-1
T(u)=Au=|2 5 ( ): 2(2) +5(-1) | = -1
17 12)+7(-1)) \-5

(b) Solve T(x) = b for x. That is, solve Ax = b, or

13\ 1
25(x1)=2
1 7)\7? 1

We row reduce the augmented matrix:

1
Hencex1 =1,x, =0,and x = (O

). The image of this x under T
is the given vector b.

(c) Since the solution of the previous equation is unique, there is
exactly one x whose image is b.

(d) The vector c is in the range of T if c is the image of some x in R?,
that is, if ¢ = T(x) for some x. This is just another way of asking if
the system Ax = c is consistent. To find the answer, row reduce

the augmented matrix:

133 (1 3 | 3 13| 3
2 5 | 4|~|0 -1 | =2|~]0 1 | 2
1715 \o 4 | 2 00| -6

The third equation, 0 = —6, shows that the system is inconsistent.
So cis not in the range of T'.

Now, given a linear transformation T, what is the matrix A that defines
it?

Proposed Exercise 8.1.1 If T : R, — Ry is given by T(eq) = (3,1, 3,1)
and T'(ey) = (5,2,0,0), where e; = (1,0) and e, = (0,1), what is the
matrix A of T?

Remember that, for any x = (x1, x2), T(x) = x1T(e1) + x2T(e2).

Theorem 8.1.1 (Matrix of a Linear Transformation) Let T : R" — R™
be a linear transformation. Then there exists a unique m X n matrix A such
that

T(x) = Ax forallx e R".

The j-th column of A is the vector T (e;), where e; is the j-th column of the
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identity matrix in R":
A=(T(er) T(er) --- T(en)).

The matrix A is called the standard matrix of the linear transformation T.

Example 8.1.2 LetA = ((1) ; and T be a linear transformation defined
by T(x) = Ax. T is called a shear transformation (Figure 8.1). It can be
shown that if T acts on each point in the blue square (Figure 8.1, above),
then the set of images forms the shaded red parallelogram (Figure 8.1,
below). It can be shown that T maps line segments onto line segments,

so we only need to check where the corners of the square are mapped

0
to. For instance, the image of the point u = ( 1) is

1 3)(0 3
r=(o 3)0)-(a)
1
1
1 3\ (1) (4
0 2/\1)  \2)°
This transformation deforms the square as if the top of the square were

pushed to the right while the base is held fixed. Shear transformations
appear in physics, geology, and crystallography.

and the image of

Example 8.1.3 Let T : R? — R? be the transformation that rotates
each point in R? about the origin through an angle ¢, with counter-
clockwise rotation for a positive angle. We could show geometrically
that such a transformation is linear. Find the standard matrix A of this
transformation. Since

rotates into | . , and rotates into .
0 sin @ 1 cos @

Therefore:
A= (COS(p = sin(p)

sing cos@
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T T T T T
-1 0 1 2 3 4

Figure 8.1: A shear transformation.



8.2 Operations with matrices

Matrix sum

The sum of two matrices A and B of the same dimensions m X 1 is

obtained by adding their corresponding entries. If

an a4 - A by b -+ b

ayy Ay v Ay bor bn - bo
A= and B=]| . ,

Am1  Am2 Amn b bm2 biun

then their sum C = A + B is given by

apn+bun  ap+b - Ay by
Ay +by  an+byn - as +boy
Am1 + b1 Am2 +bma o+ Amn + bin

Given two linear transformations T; : R" — R given by T1(x) = Ax,
and T; : R" — R™, given by Tr(x) = Bx, for matrices A and B with
corresponding dimensions, their sum S = T + T, is defined as S : R" —

R™ given by S(x) = Cx, where the matrix C = A + B.

Matrix Multiplication

Matrix multiplication has an intuitive functional interpretation, that can

be understood from the following example:

Example 8.2.1 Consider two linear transformations in R?. The trans-
formation Tr reflects points across the line x = y, and its standard

matrix R is:
0 1
)

The transformation Ts scales each point away from the origin by a factor
3 in the horizontal direction and a factor 5 in the vertical direction. Its
standard matrix S is:
3 0
S = .

If we apply Ts and then Tg we will obtain a new linear transformation,
which is no other than the composition of these transformations,
Tr o Ts. Since this is also a linear transformation, Tc, it will have its
own standard matrix C.

In order to find C, we remember that its columns will be the transforms
of e; and e,. That is:

o= 3= -0 -
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and
ey ) -0
Finally,
GI= (g g) .
Note that the transformation of e; by I¢, given by the product
0 5
(3 0) el

is identical to the action of two matrices, first S and then R,

(o)l 5=

This is not only true for e;, but for every vector x:

0 5 = 0 1\((3 O N
3 0/°"\1 o/\lo 5 ’
Moreover, each column of C is the result of multiplying S by the

corresponding column of R. This example suggests the following
definition of matrix multiplication.

The product of an m X n matrix A and an n X p matrix Bisanm X p
matrix C whose entries are obtained by taking the dot product of the
rows of A with the columns of B. If

an 42 st din bin b - blp

ax  ax - Ay by by -+ by
A= | ] ] . and B=| . . . P

Am1  Gm2 " Amn byn bux o by

then their product C = AB is given by

cn Ciz - Cip
€1 Cxp -+ C2p

C = 7
Cm1 Cm2 *°° Cmp

where

n
cij = Z aikbgj foralliand j.
k=1

Geometrically, the multiplication of two matrices A and B can be inter-
preted as the composition of two linear transformations T4 and Tp: the
matrix C = AB resulting from the multiplication of A and B corresponds
to the matrix of a linear transformation T¢ that is the composition of two
transformations T4 and T, Tc = T4 o Tp.

Note that C = AB implies that B is applied first, then A. In general,
matrix multiplication is NOT commutative: the order in which we apply

8 Matrix Algebra
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8 Matrix Algebra

a linear transformation affects the result.

Proposed Exercise 8.2.1 What is the standard matrix of the transfor-
mation S o T in example 8.2.1?

8.3 Determinants

Example 8.3.1 Given the linear transformation whose standard matrix

is 0 2 we know that e; will be expanded by a factor 3, while e;
will be expanded by a factor 2. Remembering example 8.1.2, we can
ask what is the area of the parallelogram resulting from transforming
the blue square in Figure 8.1. In this case, we have a 2 X 3 rectangle,

with area equal to 6.

Note that knowing how the area of this particular square changes will
tell us how the area of any region will change, since every square is
affected similarly, and every area that is not square can be approximated
by a sum of very small squares (and, eventually, by an integral!).

The quantity that tells us how the area of the square [0, 1] X [0, 1] is
scaled by a linear transformation whose standard matrix is A is called
the determinant of A:

b
Definition 8.3.1 (Determinant, 2 X 2 case) For a 2 X 2 matrix A = (Z d)

its determinant, det A is given by
detA = ad — cb.

The relationship between the formula of the determinant and it ge-
omegtric interpretation is self-evident when b = ¢ = 0, as the transforma-
tion of the [0, 1] X [0, 1] square is then a rectangle with sides of length a
and d. When b, ¢ # 0, however, this is not so easy to prove. See, however,
exercise 8.8 for a geometric proof.

2 1
Example 8.3.2 Given the matrix A = (_ 1 _ 3), its determinant is —5.

Can you think of why the determinant is negative? Think about the
orientation of the plane.

2 1
Proposed Exercise 8.3.1 Given the matrix A = ( 4 2), calculate its

determinant. What does this mean? Think of a geometric interpretation.

For linear transformations from R3 to R3, the determinant gives us how
much the volume of the cube [0, 1] X [0, 1] X [0, 1] gets scaled. The rul
for calculating the determinant is then:
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Definition 8.3.2 (Determinant, 3 X 3 case) For a 3 X 3 matrix

a b c
A=|d e f|,
g h i

the determinant det(A) can be calculated using Sarrus’s rule:

det(A) =aei+bfg+cdh—ceg—bdi—afh.
Proposed Exercise 8.3.2 Show that the determinant of
1 2 1
A=|0 5 4
2 30
is —6.

The general rule to calculate the determinant of an n X n matrix is more
complicated, and we will not cover it in this course.

8.4 Inverse of a Matrix

Given a linear transformation T : R"” — R", can we find another linear
transformation T~ such that ToT~! = T~!oT = Id? Using our knowledge
of matrix multiplication, if A is the standard matrix of T, finding the
inverse of T amounts to finding a matrix C such that

1 0 ... 0

01 0
AC=CA=1,, where 1I,=

00 ... 1

The matrix I,;, with 1s on the diagonal and 0s elsewhere, is called the
identity matrix of size n.

The matrix C is unique and we often refer to it as A~!. Not all matrices
(and therefore not all transformations) are invertible, and we will see in a

moment when this happens.l 1: A matrix that is not invertible is some-

times called a singular matrix, and an in-
Here is a simple formula for the inverse of a 2 X 2 matrix, along with a vertible matrix is called a nonsingular ma-

test to tell if the inverse exists. trix.

Definition 8.4.1 (Inverse, 2 X 2 case)Let

Az(g g).

Ifad —bc # 0, then A is invertible and

L1 (d -b
A T ad—bc\-c a’
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Ifad — bc = 0, then A is not invertible.
Example 8.4.1 Let
4 3
=)
Then det A = —1 # 0, and so A is invertible. Using the formula, we get
2 -3 -2 3
-1 _ —
w=-(5 7)=(3 3
It is easy to check that the calculations are correct, since
4 3\(-2 3 1 0
_1 _ _ _
A4 ‘(3 2)(3 —4)‘(0 1)‘12

N R

What has the determinant got to do with the inverse? If T~! is the inverse
of T, then it has to “undo” the effect of T on R", and so the determinant
of its standard matrix should be the reciprocal of det A. In other words,

and

1
detA™l= ——.
¢ det A

Proposed Exercise 8.4.1 Check that the previous equation is true by
doing the calculations with the matrices in example 8.4.1

So if det A = 0 then the inverse is not defined. In this case, the transfor-
mation T : R? — R? is collapsing one dimension of the plane onto one
line, and thus many different inputs will end with the same output. In
other words, this means that the linear transformation is not injective or
one-to-one. So it is not possible to find an inverse! We can write this more
rigorously as follows:

Theorem 8.4.1 If A is an invertible n X n matrix, then for each b in R", the
equation Ax = b has the unique solution x = A™'b.
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Exercises

Exercise 8.1 Let T : R3 — R2, with T(e;) = (1,3), T(ey) = (4,7), and
T(e3) = (5,4), where e, €3, and e3 are the columns of the 3 X 3 identity
matrix. Find the standard matrix of T.

Exercise 8.2 Given

2 0 -1 7 -5 1 1 2
A‘(4 -5 2)' B_(l 4 —3)’ C‘(—z 1)’

calculate:
1. —2A, 4. CD, 7. CB,
2. B—2A, 5. A+ 2B, 8. EB.
3. AC, 6. 3C-E,

If an expression is undefined, explain why.

Exercise 8.3 Let A = _23 ?) and B = (g _kS) What value(s) of k, if

any, will make AB = BA?

Exercise 8.4 Let

2 -3 8 4 5 -2
A R ]
Verify that AB = AC and yet B # C.

Exercise 8.5 Find the inverses of the following matrices:

LE ), o (5 3.
2 (5 ) w3 )

Exercise 8.6 Solve the following systems:

1 8x1+6x2 =2, ’ 8x1+5x, =9,
" 5x; +4x, = 1. " | 7x1 +5x, = 11.

In both cases, use the inverses found in Exercise 8.5.

d 4
elementary row operation on det A by calculating the determinants of
the following matrices. In each case, state the row operation and describe
how it affects the determinant.

c d
] (a b),

b
Exercise 8.7 Given the matrix A = (Z ) explore the effect of an

Exercises
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c d
a b
> (kc kd) '
Exercise 8.8 Use Figure 8.2 to obtain the formula for the determinant of
a 2 X 2 matrix using geometric arguments.

) (a+kc b+kd),

B={a+bc+d)

("’hll

d —
C = (b, d) /
!

0= (0.0) « a+b

Figure 8.2: Exercise 8.8.

Exercise 8.9 Let S be the parallelogram determined by the vectors
-2 -2 6

b1—(3)andb2—(5 -3

the image of S under the mapping x — Ax.

) ,andlet A = ( _23) . Compute the area of

Exercise 8.10 Given the two matrices A = (_63 _21) and B = (_11 _64),

obtain the matrix AB and calculate its determinant. Show that det(AB) =
det A det B. Give a geometric interpretation for this fact.

2
Exercise 8.11 Given the matrix A = ( 1 g), finding its inverse A7l =

(bn b1z

b b ) is the same as solving two systems of equations, namely:
21 02

2b11 + 5b21 =1
b11 + 3b21 =0

and

2b12 + 5b22 =0

b1y +3by = 1.
Solve both systems at the same time by writing an augmented matrix
with four columns: the two columns of A plus the two columns of the
identity matrix. When the two leftmost columns are those of the identity,
the two rightmost columns will be those of A~!. Compare the result with
the one you obtained using the formula.
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Eigenvalues and Eigenvectors

In this chapter, we will only consider linear transformations from R”"

to R" and, in particular, only the case when n = 2. That is, we will be
dealing with 2 X 2 matrices.! The goal of this chapter is to dissect the
action of a linear transformation x — Ax into elements that are easily
visualized. The main motivation are dynamical systems, such as the one

in the following example:

Example 9.0.1 (A neuron-firing model) A very simple model of neuron
activity is this: at a given (discrete) time step, a neuron can either be
activated (firing) or in a resting state. If it is firing, it can either stop at
the next step with probability 4/5, or remain firing with probability
1/5. If it is at rest, it can start firing with probability 1/3 or remain at
rest with probability 2/3.

If we write the state of the neuron at time step 7 as
X, = (probability of being firing, probability of being at rest),

then we can calculate x,,,1 as follows:

_(4/5 1/3
P = Dy

That is, the probability that at time 7 + 1 the neuron is firing is equal
to the probability that it is firing at time 7 (this is (x,); times the
probability that it stays firing (4/5) plus the probability that it was
at rest at time n times the probability that it starts firing (1/3). And
similarly with the probability that it is at rest at time n + 1.

4/5 1/3

The matrix P = (1/5 2/3

) is called the transition matrix of this
model.

Given this model, and supposing xg = (0, 1) (the neuron is at rest at
time 7 = 0), what is the probability that it is firing at time n = 1? And
atn = 10? And at n = 100?

We can calculate these numbers iterativelyy, as
Xy = Pxp-1 = P?x_1 = - - - = P"x.

For instance, if xp = (1,0), we have x; = (1/3,2/3), and x3p =
(0.624694, 0.375306). If we keep calculating with a computer, we ob-
serve that x1g0 = (0.625, 0.375), which is very similar to x.

At the same time, if we calculate the product P - (0.625, 0.375) we obtain
the same vector (0.625, 0.375). What is happening? Can we understand
this better?

1: The theory we will develop is also valid
for n X n matrices, although the computa-
tions can be much more involved.
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9.1 Eigenvalues and Eigenvectors

In example 9.0.1 we have seen a matrix A and a vector v such that Av = v.
This is a particular case of a general phenomenon:

Definition 9.1.1 (Eigenvalues and eigenvectors) We say that v is an
eigenvector or A if Av = Av for some number A, which we call the
eigenvalue associated with v.

Note that v = 0 always satisfies the equation Av = Av, for all A, and so it
is not very interesting!

This means that there are some directions that remain invariant under
the action of the linear transformation associated with A: if Av is a
multiple of v, this means that every point in that line remains in that line,
no matter what happens to the other points in R”.

It is very easy to show that a vector v is an eigenvector of a matrix A: just
calculate Av and check that the result is proportional to v.

Proposed Exercise 9.1.1 Let A = (; g) Areu = (_65) and v = (_32)

eigenvectors of A?

It is also not very hard to check that a given number is an eigenvalue of a
matrix (how would you do it?). However, it wouldn’t be very smart to go
checking every vector and number in order to see if they are eigenvectors
and eigenvalues, so we will show a general method to do it.

Since eigenvectors and eigenvalues must satisfy the equation Av = Av, it
must also be true that Av — Av = 0. In order to factor v, we must multiply
Av by the identity matrix I, thus yielding (A — AI)v = 0.

We saw in Section 8.4 that, if a matrix A is invertible, the equation Ax = b
has a unique solution. In particular, this means that the equation Ax = 0
has a unique solution. But x = 0 is always a solution of that system of
equations,? so if there is a unique solution, it must be that one.

In the case that interests us now, the system (A — AI)v = 0 will have the
unique solution v = 0 if A — Al is invertible. But this is the case that we
are not interested in: we want v # 0.

For that to happen, the matrix A — AI must be singular or non-invertible.
And the easiest way to check that is to show that its determinant is zero.

In other words: the eigenvalues of A are the numbers A that satisfy
det(A - AI) = 0.

This equation is usually called the characteristic equation of A, and it is

a polynomial equation in A.

Once we have found the values of A that satisfy the characteristic equation,
we then substitute those values of A into the system and solve it in search
for the eigenvectors. Let’s see some examples.

2: Itis also called the trivial solution.



9 Eigenvalues and Eigenvectors 84

Example 9.1.1 Find all the eigenvalues and eigenvectors of A = (; ;)

We set up the characteristic equation det(A — AI) = 0:

‘1—/\ 2

10— A6 = A2 3
3 2_/\‘_(1 MN2-1)—6=A2-31—-4.

Now we can easily solve this since it is a second-degree polynomial

equation. The two solutions are A; = —1 and A, = 4.

Let’s find the eigenvector associated to A;. We need to find the nonzero

solutions of
2 2\ (x1\ (O
3 3)\x] \0)°

The general solution is x; = —xp, with x; free. We can take as eigen-
vector (1, —1), but note that there are infinite eigenvectors! All vectors
proportional to (1, —1) will also be eigenvectors of the same eigenvalue.

Now we find the eigenvectors associated with A;:

3 = e

So we could take (2, 3) as eigenvector.

Good intuition comes from picturing what A does to the eigenvectors,
and how that in turn deforms the whole plane.

When the eigenvalues are real, as in the previous example, all eigenvectors
corresponding to a particular eigenvalue lie on the same straight line
through the origin. For example, the line represented by the vector (1, —1)
is given by I1 = {(x1, x2) : x1 + x» = 0}, while the line represented by
vector (2, 3) is given by I, = {(x1, x2) : 3x1 — 2x, = 0}. The lines [; and
I, are invariant under the map x — Ax, in the sense that if we choose a
point (x1, x2) on a line that is represented by an eigenvector, then since

Ax = Ax the result of the map is a point on that same line.’

Let’s see another example:

11
Example 9.1.2 Find all the eigenvalues and eigenvectors of A = ( 1 1).

We set up the characteristic equation det(A — AI) = 0:

1-A 1| 2

’ 1 1_/\‘—(1—/\)(1—/\)—1—/\—2/\.

Now we can easily solve this since it is a second-degree polynomial
equation. The two solutions are A1 = 0 and A, = 2. Note that there is
no problem with 0 being an eigenvalue: this just means that det A = 0
but, as we already know, this means that the equations Ax = 0 has
infinite nonzero solutions, aka eigenvectors.

Let’s find the eigenvector associated to A1. We need to find the nonzero

3: Check this using the equation of the
line.
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solutions of
1 1) (x1) (O
1 1 X2 B 0/

The general solution is x; = —xp, with x; free. We can take as eigen-
vector (1, —1).

Now we find the eigenvectors associated with A;:

- = e

So we could take (1, 1) as eigenvector.

Here we can see that the line x1 + x, = 0is collapsed onto the origin,
while the line x; — x, = 0 remains invariant.

Sometimes, the eigenvalues can be repeated:

Example 9.1.3 Find all the eigenvalues and eigenvectors of A = (g ;)

We set up the characteristic equation det(A — AI) = 0:

2-A 1
0 2-A

‘ =2-1)2-2).

The solution is A = 2, a double root of the polynomial. We say that the
algebraic multiplicity of the eigenvalue is 2. Note that we can read the
eigenvalues directly from the matrix: when the matrix is triangular,
the determinant is equal to the product of the elements of the diagonal,
and so the determinant is going to be zero whenever A — a;; = 0. In
other words, for a triangular matrix the eigenvalues are the elements
of the diagonal.

Are we going to find two eigenvectors associated with A = 2? Let’s
find out! We need to find the nonzero solutions of:

0 1) (x1\ _(O

0 0/\x) \0)°
The general solution is xp = 0, with x1 free. We can take as eigenvector
(1,0).

But there are no more solutions! There is only one direction of eigen-
vectors. We say that the geometric multiplicity of the eigenvalue is
one. This is a very important fact for linear algebra problems but, sadly,
we don't have time to go into it in this course.

9.2 Powers of a Matrix

For this discussion, we will restrict ourselves to the case in which A
is a 2 X 2 matrix with real eigenvalues. We saw that in this case the
eigenvectors define lines through the origin that are invariant under the
map A. If the two invariant lines are not identical, we say that the two
eigenvectors are linearly independent. This notion can be formulated
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as follows: two vectors u; and u, linearly independent if the equation
auj + buy = 0 has no solution for any a,b € R.

In the case of eigenvectors, it is always the case that if A1 # A, then
the two eigenvectors are linearly independent. There are also cases in
which u; and u; are linearly independent even though A; = A, (think
of diagonal matrices with equal entries in the diagonal, for instance).
We will, however, be concerned primarily with cases in which A1 # A,.
Hence, the preceding criterion will suffice for our purposes. (The other
cases are covered in courses on linear algebra.)

A consequence of linear independence is that we can write any vector
uniquely as a linear combination of two eigenvectors. Suppose that u;
and uy are linearly independent eigenvectors of a 2 X 2 matrix; then any
vector x € R? can be written as

X =aijuy + aruy,
where a1,a, € R are uniquely determined. We will not prove this
statement but will examine what we can do with it.

If we apply A to x = aju; + apuy we can use the linearity of A to show
that
Ax = a1Auy + aAup = a1A1ug + axALup,

the last step because uy, u, are eigenvectors of A.

This representation of x is particularly useful if we apply A repeatedly.
Applying A to Ax, we find that

AZX = A(al/hul + az/\zuz) = A Au; + apAAu; = alA%ul + leA%uz.
Continuing in this way yields
A'x = 111)\?111 + 112)\2”112.

Thus, instead of multiplying A with itself n times (which is rather time
consuming), we can use this equations, which just amounts to adding
two vectors (a much faster task).

Example 9.2.1 (A neuron-firing model, continued) In Example 9.0.1

4/5 1 /3)

n -
we saw that x,, could be calculated as P"x, where P = (1 /5 2/3

Let’s calculate the eigenvalues and eigenvectors of this matrix:

4/5-1  1/3

det(P—AI):‘ 15 2/3-A

-0
which yields the characteristic equation 15A% — 221 + 7 = 0, with

solutions A1 = 1 and A, = 7/15.

The corresponding eigenvectors (do the calculations yourself) are:
u; = (5,3)and up = (1, -1).

Then, xp = (0,1) = au; + buy is a system of linear equations with
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solution (doit!) 2 = 1/8,b = —5/8, and so:
_(5/8 7\" (-5/8
X =138/ ~\15) | 5/8 ]

Note that (7/15)" becomes very small very rapidly (for instance,
(7/15)'9 %~ 0.0005) and therefore we can write

_(5/8
Xn~\3/8

for n sufficiently large. This is what we had found originally!
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Exercises

Exercise 9.1 Find all the eigenvalues and eigenvectors of the following
matrices:

d 4
to calculate eigenvalues, using the trace of A, tr A = a + d and its
determinant det A = ad — bc.

a b
Exercise 9.2 For a 2 X 2 matrix A = c ) there is a faster way

1. Show that the characteristic equation of A is A2—(tr A)A+det A = 0.
2. Since the characteristic equation will eventually be factores as

(A =A1)(A = A3) =0,show thattr A = A + A, and det A = A1A;.
3. Solve the system A1 + A = tr A, A1A; = det A to show that

2
tr A tr A
A1,2 = T + (T) —detA.

4. Use this formula to calculate the eigenvalues of the matrices in
exercise 9.1.

. (-1 1
Exercise 9.3 Let A = ( 0 2).

1. Find all eigenvalues and eigenvectors of A.

2. Express x = (1, —3) as a linear combination of the eigenvectors of
A.

3. Use the previous results to calculate A%x.

2
0

-1 0

Exercise 9.4 Let A = ( s 1

). Find A ( ) without using a calculator.

Exercise 9.5 Fibonacci proposed a model for the population growth of
rabbits by means of an iterated discrete map: the number of young rabbits
at time n + 1, Y;,41 is equal to the number of adult rabbits at time n, A,
(that is, every adult rabbit has one little rabbit every time step), while
Aps1 = Ay + Y, as we assume that no rabbits die. The whole system can
be written in matrix form as follows:

=Gl e) =0

Anp 1 1)\A,)’ 1 1)

1. If Yy =1,Ap =0, calculate Ay, Ap, A3, . ... This list of numbers is
called the Fibonacci sequence.

2. Check that you can also get the same Fibonacci sequence calculating
Apso = Ay + Ay, starting from Ag = 0, A = 1. Try to reason why
the two ways of expressing this problem are equivalent.

3. Find the eigenvalues and eigenvectors of the transition matrix T.

4. Since (Yy;, Ay) = T" (Yo, Ap), use the eigenvalues and eigenvectors
of T to calculate (Y;, A,,) without calculating any power.

Exercises
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5. For large n, what is the fraction A,/Y,,? [HINT: think of what
happens to the smaller eigenvalue as 1 becomes very large.]

Exercise 9.6 A seabird colony consists of two classes of birds: immature
birds that do not breed and adult birds that do breed. Assume that the
number of immature birds is denoted by I; and the number of mature
birds by M;. We model the changes in the sizes of two classes of birds
from one year to the next using a Leslie matrix model:

I\ _ (L (05 2
i) =t ) =03 0)

Show that the bird population is predicted to grow without bound and
show that the ratio between M; and Y; becomes stable as t — oo.

Exercise 9.7 Denote the owl and wood rat populations at time k by
x¢ = (Og, Ry), where k is the time in months, Oy is the number of owls in
the region studied, and Ry is the number of rats (measured in thousands).

Suppose

Oks+1) _ (0.5 0.4) (Ok\ _ [0.50k + 0.4Rg

Ria] —-p L1J\Rg - —pOi + 1.1Rg ’
where p is a positive parameter to be specified. From the matrix we can
see that with no wood rats for food, only half of the owls will survive
each month, while with no owls as predators, the rat population will
grow by 10% per month. If rats are plentiful, the 0.4R; term will tend to
make the owl population rise, while the negative term —p Oy measures

the deaths of rats due to predation by owls. (In fact, 1000p is the average
number of rats eaten by one owl in one month.) Taking p = 0.104:

1. Find the eigenvalues A1, A, and eigenvectors v, v, of the transition

matrix T.
2. Ifxg = avy + bvy, write x; = T¥xg as a linear combination of v; and
V).

3. Determine the evolution of this system when k — oo.

Exercise 9.8 If an n X n matrix has n linearly independent eigenvectors,
we say it is diagonalizable, because we can write

A=PDP™,
where D is a diagonal matrix whose entries are the eigenvalues of A and
P is the matrix whose columns are the eigenvectors of A.

For the following matrices, find the respective matrices D and P and
check that A = PDP:

-2 12 a 0
L (—1 5) 2. (3(a—b) b)

Exercise 9.9 Diagonalization also gives an easy way to calculate the
powers of a matrix:

1. Show that, if A = PDP~! then A" = PD"P~1L.
2. Use this fact to calculate A9 for the matrices in Exercise 9.8.

Exercises
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Complex Numbers

As a way of motivation, we will see an example of a real 2 X 2 matrix that
has no real eigenvalues:

Example 10.0.1 (Complex Eigenvalues) Find the eigenvalues of the

0
matrix R = (

1 0 ), the matrix of a rotation of angle 7t/2.

The characteristic equation is A2 + 1 = 0, which doesn’t have a real
solution: this is consistent with our expectation, as R does not leave
any line invariant!

However, the fundamental theorem of algebra says that every polyno-
mial equation of degree n has always n roots, counting multiplicities.
But these roots will possibly be complex. In this example, there are
no real eigenvalues, but the characteristic equations has two complex

solutions, +V—1 and —V-1.

What does this mean for R? Before discussing this, we need to know
more about complex numbers. .

10.1 Introduction to Complex Numbers

Even though it is sometimes said that complex numbers arise in order to
find solutions to the equation x? = —1, this is not what really happened.
Whenever a quadratic equation yielded complex solutions, authors
concluded that there was no solution at all, because what they were
really searching for was the intersection between the parabola and the x
axis. In fact, complex numbers arose in the context of cubic equations. In
1545, Girolamo Cardano published a formula to solve the general cubic
equation x> = 3px + 2¢. The formula is

v =g+ NF P+ - NE-

Notice that if p*> > g° the solution involves dealing with square roots of
negative numbers, but in this case the solutions could not be dismissed
because they had an actual geometric meaning (the cubic always intersects
the x axis). Almost thirty years after Cardano published his formula,
Rafael Bombelli worked out the following example: putting p =5, g = 2
in the above cubic expression leads to x% = 15x + 4, and the solution
given by Cardano’s formula is

x = V2 +11i + V2 - 11i.

The actual solution is x = 4, and Bombelli realized that Cardano’s
formula would work if he could somehow prove that ¥2 + 11i = 2 + ni
and V2 — 11i = 2 — ni. In order for this to be true, he needed the sum of




complex numbers to follow
(a+ib)+(c+id)=(a+c)+i(b+4d).

Also, to find the n that made V2 + 117 = 2 + ni, he needed to calculate
(2 + ni)® and so he proposed the following multiplication rule

(a +ib)(c +id) = (ac — bd) +i(ad + bc),

where he used i2 = —1. Using these two rules, he was able to prove that
(2 +1)® = 2 + 114, thus solving the equation.

It was not until the end of the eighteenth century when complex numbers
became prominent in mathematics. Wessel, Argand and Gauss indepen-
dently gave a geometric interpretation to complex numbers, where a + bi
is the point in the xy-plane with Cartesian coordinates (4, b). The plane is
now called the complex plane, denoted with the letter C. In this geometric
light, the sum and multiplication rules become:

The sum A + B of two complex numbers is given by the
parallelogram rule of ordinary vector addition.

The product AB is a vector whose length is the product of A
and B, and whose angle is the sum of the angles of A and B,

where the angle of a vector is the one it makes with the x-axis. The
correspondence between the algebraic and geometric rules for sum and
multiplication is not hard to prove, and it will be useful to keep in mind
in what follows.

10.2 Terminology and Notation

A complex number z = x + iy is a point in the complex plane, and
therefore has the same properties of a usual vector in R2. The length of
z is usually called modulus and denoted |z|, and it is given by the usual

formula /x2 + y2.
The angle z makes with the x axis is its argument, we denote it by arg z.

The x coordinate of z is called its real part (Re z) and the y coordinate is
the imaginary part (Im z).

Finally, the complex conjugate of z, denoted by z, is the number given by
zZ=x—1y.

If we write z = x + iy we say we are using the binomial form, but we could
mark the same point in the plane by using its length v = |z| and angle
0 = argz as x = r£0. This is called the polar form of the number x, and
it is especially useful when dealing with complex multiplication, as the
geometric interpretation of complex multiplication yields

(r1£601)(r2£02) = (r112)£(01 + 02).

There is not a unique polar form for each complex number. Because
after turning 2m in a circle around the origin we go back to the point
where we started, every complex number has infinitely many arguments,

10 Complex Numbers
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and therefore infinitely many polar forms. All of them, however, are
summarized as
argz = Argz +2mn,n € Z,

where Arg z € [-7, 1] is called the principal argument of z. This very
simple fact about angles will become very important in the course of this
subject.

10.3 Geometric interpretation of complex
multiplication

It is not straightforward to understand the geometric meaning of complex
multiplication from the binomial form that we have seen before. However,
there is a trick. Note that the binomial form can also be written as
z = |z| cos 0 + i|z| sin O. So if we take another complex number w =
|w| cos ¢ + i|w| sin ¢, the multiplication becomes

zw = |z| - |w| [(cos@coscp —sin O sin ¢) + i(sin O cos ¢ + cos@sin(p)]
=|z| - |w| [cos(@ +¢) +isin(6 + ¢)] ,

and so the result is a complex number whose modulus is the product of
the moduli of z and w and whose argument is the sum of the arguments
of z and w. This connection will become much more intuitive in what
follows:

10.4 Euler’s Formula

Although we have just seen a way to write the polar form of the complex
number z = rZ6, we usually write it as z = re’’. The equivalence
between these two forms comes from the following formula, discovered
by Leonhard Euler around 1740 (and thus called Euler’s formula):
e'? = cos O +isin 6.

The complex number ¢’ lies in the unit circle and has angle 6, as
evidenced by the right-hand side of Euler’s formula. As a result of this
formula, complex multiplication now becomes

(rleigl)(rzeiez) — 1’17‘2€i(61+62)/

which is what we would have obtained from algebraically manipulating
ei® using the rules for the real function e*. We will see that, in fact, this
is more than a coincidence.

Proof of Euler’s formula using power series

In Chapter 3 we saw that the power series for the exponential function
is
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Euler wrote x = i60 in the above formula to obtain

=14+i0 - ——-i—+...
A ST

. ®© ngn 2 3
619:21 9| 6- .0
n=0

where we have used the fact that i> = -1, i> = —i and i* = 1. Separating
the real and imaginary parts of the right-hand side, we get

) 2 4 6
Ree—1-L .8 _ &
2 4! 6!
; 0> 0> 0o

i0
Ime —9—? a—?

and it is obvious from inspection of these power series that Re ¢’ = cos 0
and Im ¢'? = sin 6.

10.5 Complex Multiplication as Matrix
Multiplication

When we multiply a given complex number z = x + iy by another
complex number A = a + bi, the result is

Az = (ax —by) + i(bx + ay).

But what if we could understand A and z as a 2 X 2 matrix?

Consider two complex numbers z; = 4 + bi and z, = ¢ + di and their
product:

2122 = (a + bi)(c + di) = (ac — bd) + i(ad + bc) =: z.

Since we can interpret the numbers z; and z; as the vectors (4, b) € R2
and (c, d) € R?, respectively, what does it mean when we multiply z; by
z,? We haven’t defined any multiplication of vectors by vectors where
the result is a vector. But what if we could understand z; and z, as 2 X 2
matrices?

Let’s define two matrices:

c —d
Zy = .
Note that these matrices store the same information as z; and z5, respec-
tively. Let’s compute their matrix product:

_[(a =b)[c -d\ _(ac-bd —(ad+bc)|
ZlZz_(b a)(d c)_(ad+bc ac—bd)_'z'

Comparing Z just above with z in Equation 3, we see that Z is indeed
the matrix corresponding to the complex number z = z;z;. Thus, we can
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represent any complex number z equivalently by the matrix:

7 Re(z) —Im(z)
" \Im(z) Re(z) |’

and complex multiplication then simply becomes matrix multiplication.

Further note that we can write:
1 0 0 -1
Z =Re(z) (0 1) + Im(z) (1 0 ),

i.e., the imaginary unit i corresponds to the matrix

0 -1
1 0
and i2 = —1 becomes:
0 -1\f0 -1)_ (1 0
1 0 1 0/ 0 1/°

Writing z = re'® = r(cos 0 + i sin 0), we find

7= cos —sinf
~ " \sin® cosO |’

corresponding to a stretch factor » multiplied by a 2D rotation matrix.

In particular, multiplication by i corresponds to the rotation with angle
6 = m/2 and r = 1, which is what we had seen in Example 10.0.1.

10 Complex Numbers
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Exercises

Exercise 10.1 Find real numbers x and y such that

43 + iy .
— =44+13
x —15
Exercise 10.2 Compute
L @iy, 5 L 5 Lt
2. {13, i’ 1-i’
4 1 6. i+i2+ i+
T 1+2i

\2 \2
Exercise 10.3 Compute the complex conjugate of z = (gfg;) + (”’b’,) .

Exercise 10.4 Let z € C, find the real and the imaginary part of

1. z +3i,
2. iz,
3. 1+2z)(z+1)

in terms of the real and imaginary parts of z.

Exercise 10.5 Compute the modulus of the following complex numbers:

1. —i, 4. (1+1)? 6 1
2. 1+i 1 (1-1)?

5. , .
3. 1—i 1+i 7. 1-iV3.

Exercise 10.6 Find the principal argument of the following complex
numbers, and express it in radians:

L1+ 2@+t | 3+ | 4 a+ip

[Remember, the principal argument of a complex number is the only
argument O that satisfies - < 0 < 1]

Exercise 10.7 Express the following numbers in binomial form (i.e. as
a + bi, where a and b are the real and the imaginary part, respectively):

1 el —¢7ii, ’ 1-e?! 3. e™(1—e751),
S 1+ert’
Exercise 10.8 Express the following numbers in polar form (i.e. as re'?,
where r is the modulus and 0 is the principal argument):

1 —i, 4. (1+i)? 6. 1'2,
2.1+ 5 L (1-1)
3. 1—i T+’ 7. 1—iV3.

Exercise 10.9 We can use Euler’s Formula to derive many relevant
trigonometric identities.

1. Find an expression for cos 360 and sin 36 in terms of cos 0 and sin 6.

95



2. Express 2% cos* O in terms of cosines of multiples of theta. [HINT:
2cos0 =el? + 710 ]

Exercise 10.10 On December 21, 1807, an engineer named Joseph Fourier
announced to the prestigious French Academy of Sciences that an arbi-
trary function f(x) could be expanded in an infinite series of sines and
cosines. Specifically, let f(x) be defined on the interval -L < x < L, and
compute the numbers

L
=l/ f(x)COS@dx, n=0,1,2,... )
L), I

and

1 [t . nTX
Z[L f(x)sdex, 1’[—1,2,... (2)

Then, the infinite series

%+Z[uncos—+b sm—] (3)

n=
converges to f(x).

Use Euler’s formula to express the coefficients of the Fourier series as
complex exponentials, so that

fx)= > cpe™T

n=—oo
What is the relationship between a,,, b, and c,,?

Exercise 10.11 Find the eigenvalues of the following matrices and discuss
the geometric action of the corresponding linear transformation.

¥

1.
1 V3

W N
I [
o
|
Now T
N — ——

Exercise 10.12 The equation z = (re’?)!/" has n complex roots, given by
the following formulas:

; 0 +2mk
zx = rre'%, T’sz’l/", Ok = nn , k=0,1,...,n—-1.
Find the following roots:
L (=i)'?, 3. (=14,

12 4. 1Y6,
2. | -1-%i|
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PART III. SYSTEMS OF
DiI1rreReENTIAL EQUATIONS



Systems of Linear Differential
Equations

In Chapter 6 we saw that differential equations in one-dimensional
phase spaces were extremely confined— all trajectories are forced to
move monotonically or remain constant. In higher-dimensional phase
spaces, trajectories have much more room to maneuver, and so a wider
range of dynamical behavior becomes possible. Rather than attack all
this complexity at once, we begin with the simplest class of higher-
dimensional systems, namely linear systems in two dimensions. These
systems are interesting in their own right, and, as we’ll see later, they also
play an important role in the classification of fixed points of nonlinear
systems. We begin with some definitions and examples.

11.1 Definitions and Examples

A two-dimensional linear system is a system of the form

X =ax+by,
y=cx+dy,

where a, b, ¢, d are parameters. If we use boldface to denote vectors, this
system can be written more compactly in matrix form as

x = Ax,

el ()

Such a system is linear in the sense that if x; and x; are solutions, then so
is any linear combination c1x; + c2xp. Notice that x = 0 when x = 0, so
x* = 0 is always a fixed point for any choice of A.

where

The solutions of x = Ax can be visualized as trajectories moving on the
(x, y) plane, in this context called the phase plane. Our first example
presents the phase plane analysis of a familiar system.

Example 11.1.1 As discussed in elementary physics courses, the vi-
brations of a mass hanging from a linear spring are governed by the
linear differential equation

mx + kx =0, (11.1)

where m is the mass, k is the spring constant, and x is the displacement
of the mass from equilibrium. Let’s give a phase plane analysis of this
simple harmonic oscillator.

This system can actually be solved analytically. But that’s precisely
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what makes linear equations so special! For the nonlinear equations
of ultimate interest to us, it’s usually impossible to find an analytical
solution. We want to develop methods for deducing the behavior of
equations like (11.1) without actually solving them.

The motion in the phase plane is determined by a vector field that
comes from the differential equation (11.1). To find this vector field, we
note that the state of the system is characterized by its current position
x and velocity v; if we know the values of both x and v, then (11.1)
uniquely determines the future states of the system. Therefore, we
rewrite the system in terms of x and v, as follows:

The first equation is just the definition of velocity, and the second is
the differential equation (11.1) rewritten in terms of v. To simplify the
notation, let w? = % Then the system becomes

This system assigns a vector (¥,0) = (v, —w?x) at each point (x,v),
and therefore represents a vector field on the phase plane.

For example, let’s see what the vector field looks like when we’re on the
x-axis. Then v = 0 and so (%, 9) = (0, —w?x). Hence the vectors point
vertically downward for positive x and vertically upward for negative
x (Figure 11.1). As x gets larger in magnitude, the vectors (0, —w?*x)
get longer. Similarly, on the v-axis, the vector field is (x,?) = (v,0),
which points to the right when v > 0 and to the left when v < 0. As we
move around in phase space, the vectors change direction as shown in
Figure 11.1.

Just as in Chapter 6, it is helpful to visualize the vector field in terms of
the motion of an imaginary fluid. In the present case, we imagine that
a fluid is flowing steadily on the phase plane with a local velocity given
by (¥,0) = (v, —w?x). Then, to find the trajectory starting at (xo, vp),
we place an imaginary particle or phase point at (xo, v9) and watch
how it is carried around by the flow.

The flow in Figure 11.1 swirls about the origin. The origin is special,
like the eye of a hurricane: a phase point placed there would remain
motionless, because (x,7) = (0,0) when (x,v) = (0,0); hence the
origin is a fixed point. But a phase point starting anywhere else would
circulate around the origin and eventually return to its starting point.
Such trajectories form closed orbits, as shown in Figure 11.1. Figure 11.1
is called the phase portrait of the system—it shows the overall picture
of trajectories in phase space.

11.2 Solving Linear Systems

The trajectories plotted in Figure 11.1 can actually be obtained analytically.
Given the system x = Ax, its solutions will be vector-valued functions:

Figure 11.1: Vector field for the simple
harmonic oscillator, with two trajectories
plotted on top of it. The initial conditions
are xg = 1.5,99 = 0 (blue line) and xg =
1,90 = 0.5 (orange line).
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that is, if x(f) = (x(f), y(t)) we will have two functions. As in Chapter
6, we will see that every system of differential equations admits infinite
solutions, that we will need to determine using initial conditions.! Now,
we are going to try something crazy. Remember that the one-variable
differential equation % = ax had as solution x(t) = e?*? Since the two-
dimensional equation looks similar, maybe we can try a solution of the
type x(t) = eMv, where A is a constant and v is a vector. If we plug it into
the system,

x(t) = AeMv = Ax = AeMv = Av = Av.

So this works if A is an eigenvalue of A and v its corresponding eigenvector.
And since we know that A will (almost) always have two different
eigenvalues,2 and that if we have two different solutions their linear
combination is also a solution® , we can write the general solution of the

system as follows:

At Axt

X(t) =cC1e"" vy + e vyl

(Note that this is very similar to the discrete systems we saw in Section
9.2.

Example 11.2.1 Solve the following system of differential equations:

X =2x—-2y
y=2x—-3y

2 —
2 -3
A2 = =2, vy = (1, 2). So the general equation for the system will be

(;8) =cpe! (i) +cpe (;) .

The constants ¢y and ¢, will have to be determined by the initial
conditions x(0) and y(0). For instance, if xo = =1, yo = 4, we make
t = 0 in the solution above and solve the system

()=o) ==L

which has as solution ¢; = =2, ¢, = 3. Try to get an intuitive under-
standing of what is happening with the trajectories by plotting the
invariant lines and sketching the vector field (Figure 11.2).

2
The eigenvalues of the matrix ) are Ay =1, vy = (2,1) and

11.3 Equilibria and Stability

We have seen that the zero vector is always a fixed point of the system
x = Ax. If det A = 0 there will be other fixed points:

1: Note that now we need two initial con-
ditions in order to completely determine
the system.

2: The case where A has two equal eigen-
values is a bit different and we will not see
it in this course.

3: This is sometimes called the supeposi-
tion principle
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Figure 11.2: Vector field for the system
in Example 11.2.1, with the invariant lines
defined by the eigenvectors of the matrix
A in black and some trajectories in green.
Note that the trajectories approach the
origin from one direction, but they go
away from it from the other.
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Example 11.3.1 Take the system

X=3x+y
Y =6x+2y

It is obvious that (0,0) is a fixed point, because %(0,0) = 0 and
7(0,0) = 0. But we can also see that any point that satisfies 3x = —y
will also be a fixed point. In this case, we say there exists a degenerate
line of fixed points.

Let’s assume det A # 0. Then (0, 0) is the only solution of the system
Ax = 0, that is, the only fixed point of the system. From the general
solution for the linear system that we wrote above, we can see that the
behavior of the trajectories as t — oo will depend on the values of the
eigenvalues of A.

First, it’s useful to introduce some language that allows us to discuss the
stability of different types of fixed points. This language will be especially
useful when we analyze fixed points of nonlinear systems in Chapter 12.
We say that x* = 0 is an attracting fixed point if all trajectories that start
near x* approach it as f — oo. That is, x(t) — x* as t — co. In fact, x*
attracts all trajectories in the phase plane, so it could be called globally
attracting. When trajectories go far from the fixed point when ¢t — co we
say that the fixed point is unstable. Finaly, if the trajectories don't go
either toward nor away from the fixed point, we say it is neutrally stable
(Figure 11.1).

11.4 Classification of Fixed Points

We can show the type and stability of all the different fixed points,
depending on the eigenvalues:

Different real eigenvalues

If both eigenvectors are real but different, we have three cases:

1. If Ay, A; < 0 the origin is stable. The trajectories will approach it
getting closer to the invariant lines defined by the eigenvectors. In
this case we say the origin is a stable node.

2. If Ay, A, > Otheoriginis unstable. The trajectories will go away from
it getting closer to the invariant lines defined by the eigenvectors.
Here we say the origin is an unstable node.

3. If Ay < 0and A; > 0, we have a saddle point, such as in Example
11.2.1. Here the origin is still unstable, but one of the directions is
attracting and so it merits a special mention.

Complex eigenvalues

If the eigenvalues are complex A1 » = a+bi, then we will have oscillations.*
Whether the origin is stable or unstable will depend on the real part of
A1,2. Because of the oscillations, we now refer to the origin as a spiral. If

4: Remember that, because of Euler’s for-
mula, we can write complex exponentials
as sums of sines and cosines.
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the eigenvalues are purely imaginary, the trajectories will oscillate the
origin without going to or away from it, and we say that the origin is a

(neutrally stable) center (recall example 11.1.1!).

Example 11.4.1 Study the behavior of the system
X=x—4y
y=x+y

1 . .
The matrix ( 11 ) has eigenvalues A1, = 1 + 2i and corresponding

eigenvectors vi» = (£2i,1) (it is not hard to show that complex
eigenvalues and eigenvectors always come in pairs of conjugates when
the matrix A is real). Then the general solution is

x()) _  aeaiy (20 (a-2iy [—21
(y(t)) = C1€ 1 + cpe 1]

But wait a minute! The original system was real! How come we get
complex solutions! Well, not so fast. Let’s apply Euler’s formula and
see what happens. Since 12" = ¢!(cos 2t + i sin 2t), we have:

x(t)\ _  ;(—2sin2t + 2i cos 2t ¢ [—2sin2t — 2i cos 2t
y(t)) ~ ! cos 2t + i sin 2t 2 cos2t —isin2t |’

and note that the two vectors are conjugate! (this always happens, by
the way). With a bit of algebra, we obtain

x(t)) ¢ (—2sin2t) . ¢ [2cos2t
(y(t)) = len e ( cos 2t ) illen = el ( sin 2t )'

and the two vectors are the real and imaginary parts of e(1+2)v,.

Since ¢1 + ¢ and i(c1 — ¢2) are arbitrary constants that will have to be
determined by the initial conditions (in this case i(c1 — ¢2) = xp and
C1 + ¢2 = yo), we can simply call them k; and k, and write

x(t)) _, ;[-2sin2t ¢ (2 cos 2t
(y(t)) =he ( cos 2t ) *kae sin2t |’
and there are no imaginary numbers any longer.

Note that this system will oscillate around the origin, getting farther
and farther away from it (Figure 11.3).

In short, if the matrix A has complex eigenvalue A and corresponding
eigenvector v (no need to consider their conjugates), the general solution

becomes
x(t) = c1Re (eMv) + colm (eMv).

Figure 11.3: Vector field for the system in
Example 11.4.1, some trajectories in green.
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Exercises

Exercise 11.1 For the following systems, find (when possible) the general
solution, plot the phase portrait and classify the fixed point. If the
eigenvectors are real, indicate them:

1 xX=y 5 x = b5x + 10y
|y =2 -3y |y=—x-y
5 3:c=3x—4y 6. %:—3x+2y
y=x-Yy y=x-2y
3 X =5x+2y - X =-3x+4y
|y =-17x -5y |y =-2x+3y

n X =4x -3y 8. X=y
Y =8x -6y y=-x-2y

Exercise 11.2 (Love Affairs, by Steven Strogatz) Romeo is in love with
Juliet, but in our version of this story, Juliet is a fickle lover. The more
Romeo loves her, the more Juliet wants to run away and hide. But when
Romeo gets discouraged and backs off, Juliet begins to find him strangely
attractive. Romeo, on the other hand, tends to echo her: he warms up
when she loves him and grows cold when she hates him.

Let
R(t) = Romeo’s love/hate for Juliet at time ¢

J(t) = Juliet’s love/hate for Romeo at time ¢.

Positive values of R and ] signify love, while negative values signify hate.
Then a model for their star-crossed romance is

drR _
E = —bR
where the parameters a and b are positive, to be consistent with the story.

Study the outcome of the system: will Romeo and Juliet find love?

Exercise 11.3 Now consider the forecast for lovers governed by the
general linear system
{‘;—lf = aR +b]

%:cR+d]

where the parameters 4, b, ¢, d may have either sign. A choice of signs
specifies the romantic styles.

1. What happensifa =d <0and b =c¢ > 0?

2. Whatifa =0,b =1,c = =1 and d = 1? Classify the fixed point at
the origin. Sketch R(f) and J(¢) if R(0) = 1,](0) = 0.

3. Suppose Romeo and Juliet react to each other, but not to themselves
(a=d=0,b,c > 0). What happens?

Exercise 11.4 A drug is administered to a person in a single dose. We
assume that the drug does not accumulate in body tissue, but is filtered
from the blood by the kidneys which then pass the drug into the urine.



We denote the amount of drug in the body at time ¢ by x1(t) and in
the urine at time f by x,(t). Initially, x1(0) = K and x2(0) = 0. Suppose
a fraction k; of the drug is filtered out by the kidneys in each unit of
time. Then the movement of the drug between the body and the urine is

modeled by
X1
X2

Exercise 11.5 Write the general solution of the harmonic oscillator

—kix1

k1x1

Solve for x1(t) and x,(f).

mx +kx =0,
seen in Example 11.1.1. Find the particular solution if x(0) = 0, x(0) = 1.

Exercise 11.6 Disturbances in forests (wind, fire, etc.) create gaps by
killing trees. These gaps are eventually filled by new trees. We will model
this process by a two-compartment model. We denote by x;(¢) the area
occupied by gaps and by x;(f) the area occupied by adult trees. We
assume that the dynamics are given by
x1 = —-0.2x1 + 0.1x,
322 = 0.2x1 - 0.13(2
1. Show that x1(t) + x2(t) is a constant. Denote the constant by A and
give its meaning.
2. Let x1(0) + x2(0) = 20. Use this to replace x,(t) therefore reducing

the system to one variable x1 = 2 — 0.3x;.
3. Solve the system and determine what fraction of the forest is

occupied by adult trees at time + when x1(0) = 2 and x(0) = 18.

What happens as t — c0?

Exercise 11.7 What happens to the system x = Ax if the matrix A has
two equal eigenvalues? Study the evolution of the system by sketching
the phase portrait:

30
Lasfl Y

31
24l )
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Systems of Nonlinear Differential
Equations

12.1 Introduction

Generally, we are interested in systems of differential equations of the
form

dx

d_f.'l = fl(x11x2/ .. '/xﬂ)

dx

d_tz = fz(xlleI . -/xn)

dx,

i =fn(X1,JC2,...,xn) (12.1)

where f; : R" - R, fori =1,2,...,n. We assume that the functions f;,
i =1,2,...,n, do not explicitly depend on ¢; this system is therefore
called autonomous.

We no longer assume that the functions f; are linear, as in Chapter 11.
Using vector notation, we can write this system in the form

dx

¢
where x = (x1, X2, ..., x;), and f(x) is a vector-valued function f : R" —
R" with components f; : R" — R, i = 1,2,...,n. The function f(x)
defines a vector field, just as in the linear case.

Unless the functions f; are linear, it is typically not possible to find explicit
solutions of systems of differential equations. If we want to solve such
systems, we frequently must use numerical methods. Instead of trying to
find solutions, we will focus on fixed points and their stability.

Just like for linear systems, we say that a point x = (x1, X2,...,x,)isa
fixed point (also called critical point or equilibrium) of the equation
dx :

X = f(x), if

dt ’

This implies that if we start the solution of a system of differential
equations at an equilibrium point, it will stay there for all later times.

As in the linear case, a solution might not return to an equilibrium after
a small perturbation; if the solution returns to the equilibrium, we call it
stable, while if the solution does not return, then we call the equilibrium
unstable. In the next section we will see how to analyze the stability of a
fixed point analytically. We will restrict our discussion to systems of two
equations in two variables.!

1: The concepts are the same when we
have more than two equations, but the
calculations become more involved.
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12.2 Stability of fixed points

For any fixed point x* that satifies f(x*) = 0, we look at what happens to
a small perturbation to determine its stability. That is, we look at how
x = X" + 1 changes under the dynamics x = f(x) assuming that 1 is very
small:

doo o v_dn_ .
E(X +1])— E —f(X +7])
The linearization of f(x) about x* is
f(x) ~ f(x*) + Df(x")n = Df(x)n,

since f(x*) = 0. Here Df(x") is the Jacobian matrix evaluated at x*:

Definition 12.2.1 (Jacobian matrix, 2 X 2 case) Let f : R? — R2. The
Jacobian matrix of f is the m X n matrix of all partial derivatives of f, given

by
)it
Df(x):(g;; gyz),
9x 9y

where % is the partial derivative of fi with respect to x, which is caclulated

by taking y as a constant and computing the derivative of fi as a function of
x only (and similarly with the remaining partial derivatives). The Jacobian
matrix is sometimes denoted by J¢(x).

Example 12.2.1 1. If f(x, y) = x?y + 5, find g—ﬁ and 3—5.

To find % we hold y constant and differentiate only with respect
to x; this yields

d af
a(xzy +y°) = 55 2xy.
Similarly, to find §—£ we hold x constant and differentiate only
with respect to y:

9 2 s _9f _ o 2
8y(xy+y)—ay_x +3y°.

2. Find Z—J; if f(x,y) = #yyz By the quotient rule,
of _y&2+y?)-2x%y  y(y®—x?)
ox (2 +y2)?2 (2 +y2)?

Our previous discussion means that we can approximate f(x + 1) by its
linearization Df(x)1n, leading to

dn
E - Df(x)n/

which is the linear approximation of the dynamics of the perturbation

1.
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Note that Df(x) is a 2 X 2 matrix of constants, so we have a linear system of
equations. The eigenvalues of the matrix Df(x") allow us to determine the
nature of the equilibrium, just like in Section 11.4. This is a local analysis,
just as in the case of a single differential equation, since the linearization
is a good approximation only as long as we are sufficiently close to the
point about which we linearized. In the limit cases, where A1 = A, or if
A is purely imaginary, or if one of the eigenvalues is zero, the behavior
may differ from the linearized case. In these cases, the nonlinear terms
cannot reasonably be neglected. There are additional methods that one
can use to analyze the stability of equilibria from boundary regions, but
these methods are beyond the scope of this course. You need to know
that linearization cannot be trusted for these equilibria, and you may
regard them as being unclassifiable for the time being.

The main challenge when identifying equilibria in nonlinear equations
is that we must solve a system of equations to find all the points where
f(x) = 0. These equations will, in general, be nonlinear, so we cannot solve
them using general methods. Typically, we must use one of the equations
to eliminate a variable; that is, we must rewrite the other equation in
terms of a single variable. We may then solve the rewritten equation in a
single variable. Let’s see an example:

Example 12.2.2 Consider the system

dx

— =x-2x"— 2xy

g; (12.2)
_— = — 2 —_

T 4y - 5y° —7xy.

To find equilibria, we set the right-hand sides of (12.2) equal to zero:

x—-2x*-2xy=0 = x(1-2x-2y)=0,
4y -5y -7xy =0 = y(4-5y —7x) =0.

From the first equation, either x = 0 or 2x + 2y = 1. Using these cases:

» If x = 0, the second equation implies y(4 —5y) =0,soy = 0 or
y =i
» If 2x + 2y = 1 or, equivalently, x = 1 — y, we get:

y(4—5y—7(%—y)):0 = y(%+2y)=0,

soy =0 or y = —1. Substituting into x = 1 — y, we find:

=~ W

1 1
IfyzO,x:E; ifyz—z,xz

To summarize, there are four equilibria: (0, 0), (0, %) , (3,0, (3,-1).
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To analyze stability, we compute the Jacobian matrix:

d 2
e % 3—3)_(1—4x—2y —2x )
— | 9f; afr | — _ _ _ :
a_XZ 3_; 7y 4-10y —7x

Now, evaluate Df at each equilibrium:
» At (0,0):
10
or00=(1 9]

The eigenvalues are A; = 1 and A, = 4. Both are positive, so
(0,0) is an unstable node.

> At (O, %):
4 -3 0
il [P
oefo)= (1)
The eigenvalues are A1 = —% and A, = —4. Both are negative, so
(0, £) is a stable node.
> At (%,0):

o)1 )

The eigenvalues are A; = —1 and A, = 4. One is positive and one
is negative, so (3,0) is a saddle point.

> At(3,-1): o
3 1 -2 2

— __| = 2 2

Df(4' 4) ( )

The eigenvalues are complex with negative real parts, so (3, —)
is a stable spiral.

12.3 Graphical Analysis of Nonlinear Systems

We have shown how to use linearization to understand how solutions
behave near the point equilibria of a system of nonlinear equations. What
other information can be gleaned from the system? In this section, we
describe a graphical method for analyzing the behavior of solutions over
the entire plane.

If = fi(x,y) and y = f2(x, y), the curves

filx,y)=0 and fo(x,y) =0

are called zero isoclines or nullclines, and they represent the points in
the x—y plane where either ‘;—’t‘ =0 or % = 0. The point where both
nullclines intersect is a fixed point, and we can study its stability using

linearization.

On the fi = 0 isoclines, % = 0, so the direction vectors must point

either vertically upward (if f, > 0) or vertically downward (if f, < 0).
Similarly, on the f, = Oisocline, % = 0, so the direction vectors must point
horizontally, either to the right (if fi > 0) or to the left (if f1 < 0). Here is
an important observation: if f; > 0 at one point of an f, = 0 isocline, then
f1 > 0 along the entire isocline until we reach an equilibrium. This is
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because f can only change its sign at a point where f; = 0, and if fj =0
on the f, = 0isocline, that point is an equilibrium. Similarly, if a segment
of the f, = 0 isocline does not contain an equilibrium, f; must have the
same sign over that entire segment. We can use similar arguments to plot
the directions of the vector field in the regions between nullclines.

Example 12.3.1 The nullclines of the previous system (12.2) are

dx 1
E_O = x—Oory—E—x

d
—y:O i yzOory:i;—

it 2o

| a1

The nullclines, fixed points and some trajectories of the system are
plotted in Figure ??2.

12.4 Fitzhugh-Nagumo Model of a Neuron

We can think of a neuron as a bistable system; that is, it can exist in one of
two stable states: either with Na* ions outside and K* ions inside, or vice
versa. The neuron transitions between these states only when it receives
a sufficiently strong stimulus, making it an excitable system.

Fitzhugh (1961) and Nagumo et al. (1962) developed a model that captures
these dynamics, characterized by two variables: V, the voltage difference
across the neuron membrane, representing the net difference in charge
inside and outside the cell, and w, modeling the sodium and potassium
ion channels that regulate ion flow. The Fitzhugh-Nagumo equations
are given by:

ij—‘: =-VV-a)(V-1)-w,

(12.3)
d_w =V -cw
dt !

where 4 and ¢ are constants satisfying 0 < a < 1and ¢ > 0.

The nullclines of the system are

w=-VV-a)(V-1) and w= %
The zero isoclines are shown in Figure 12.2, where the dV /dt = 0 isocline
is a cubic curve, and the dw/dt = 0 isocline is a straight line. The
behavior of the system depends on the parameter c: for small c, the
isoclines intersect only once at (0,0), while for larger ¢, the isoclines
intersect three times, resulting in three equilibria.

To analyze stability, we linearize the system around each equilibrium.

The Jacobian matrix is:

—3V242V++2aV —a -1

Df(V,w) = 1 e

PN Y R

\

\

\
05

Figure 12.1: Fixed points, nullclines and
trajectories of the system (12.2).

0a
v

Figure 12.2: Nullclines of the Fitzhugh-
Nagumo model with ¢ = 8 (blue) and
¢ =1 (orange).



12 Systems of Nonlinear Differential Equations | 110

At (0,0):
Df(0,0) = (_1“ _1) )

—C

with both eigenvalues with a negative real part. Therefore, (0, 0) is always
a stable equilibrium.

But what happens for large values of ¢? The three equilibria obey
14
-VV-a)(V-1)=w, w=V/tc = -V(V-a)(V-1)= =

so either V = 0 or ¢(V — a)(V — 1) = —1. The last equation is solvable,
but let’s see one particular example.

Proposed Exercise 12.4.1 Find the three equilibria of the model when
a=1/4and c = 8.

For a = 1/4 and ¢ = 8, the equilibria are (0, 0), (%, %6) p (%, 3%) .

Let’s look at the stability of the new equilibria: at (%, %), the Jacobian

matrix is: .
1 1 - -1
el [ R
Df(2'16) ( 1 —8)'

Here, det(Df) < 0, so (3, =) is a saddle point.

At (2, 2), the Jacobian matrix is:

3 3 -+ -1
i 16
Df(4’32) ( 1 —8)‘

Here, det(Df) > 0 and tr(Df) < 0, so (%, %) is a stable node.

For small ¢, the neuron always returns to (0, 0), representing the resting
state. For larger ¢, the neuron exhibits bistability, with two stable equi-
libria at (0,0) and (2, 2 ). The system’s behavior depends on the initial
conditions:

» If V(0) < V,, the neuron returns to (0, 0) (resting state).

» If V(0) > V., the neuron fires and converges to (%, 33—2)

Figure 12.3 illustrates the solution curves and potential V(¢) for different
initial conditions. For weak stimuli (V(0) < V;), V(t) decays to 0. For
stronger stimuli (V(0) > V), V(t) converges to the fired state.

Figure 12.3: Vector field for the Fitzhugh-
Nagumo model (Eq. (12.3)) with the null-
clines and some trajectories in green. Pa-
rameters: a = 1/4,¢ = 8.
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Exercises

Exercise 12.1 Find all fixed points of each system of differential equations
and determine their stability.

. {ﬁfl—’t‘ = —x+2x(1-x),
7 =y +5y(l—x—y).
) {Z—’t‘ =2x — x% - 2yx,
& =v-2t -
3 {‘;—’t‘ =4x(1-x)-2xy,
# =y2-y-y
4.{% =xy -2y,
G =x+y.

Exercise12.2 Assume thata > 0. Find all point equilibria of the following
system of differential equations and characterize their stability:

dy  _ 2
ar —y—x.

{‘é—’f = y(x —a),

Exercise 12.3 Consider the following system of differential equations:

& =x(10-2x—y),
¥ =y(0-x-2y).

(a) Graph the zero isoclines.

(b) Find all equilibria and classify them by linearizing the system near
each equilibrium.

(c) Draw the directions of the vector field on the zero isoclines and in
the regions between the zero isoclines.

Exercise 12.4 The Lotka-Volterra model of interspecific competition for
two species is given by the following equations:

aNy - _ 1Ny (1 _N _alzNz) ,

dt Ky Kq
AN, _ Ny anNy
i = TzNz (1 X, _Kz .

The coefficients r1, 12, K1, Kz, 12, a1 are all positive. Takery = 1,7 =
1,Ki=1,K, = 1.

1. Find the fixed points and study their stability if a1, = 0.4, ax; = 2.
2. Find the fixed points and study their stability if a1 = 2, a7 = 0.4.
3. Find the fixed points and study their stability if a1, = 0.4, az; = 0.4
4. Find the fixed points and study their stability if a1o = 2, a1 = 2.

Exercise 12.5 The Lotka-Volterra model for predator-prey interactions is

4 =yN-aPN,
@ =pPN -dP,
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where 7 is the per capita growth rate of N, the prey, d is the death rate of
the predator P, and a, b measure how interactions affect the densities of
N and P respectively.

Ifr=5,a=b=d=1,

(a) Show that this system has two equilibria: the trivial equilibrium
(0,0), and a nontrivial one in which both species have positive
densities.

(b) Use the eigenvalue approach to show that the trivial equilibrium is
unstable.

(c) Determine the eigenvalues corresponding to the nontrivial equi-
librium. Does your analysis allow you to infer anything about the
stability of this equilibrium?

Exercise 12.6 Assume the following example of the FitzHugh-Nagumo
model:
{@—‘{ =-V(V=-3/5(V -1)-w,

dw  _ 7 _
i =V -cw.

Find the smallest value of ¢ for which the model predicts the existence of
multiple equilibria.

Exercises
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Solutions to Exercises

A.1 Functions

Exercise 1.1

(i)

(ii)

(i)

(iv)

(vi)

(vii)

We can factor out the denominator as x? — 5x + 6 = (x — 2)(x — 3);
therefore, the domain is R — {2, 3}.

There are two conditions for f(x) toexist: 1 —x2 > Oand x> —1 > 0.
Together they imply 1 — x? = 0. Therefore the domain is just the
set {-1,1}.

There are two conditions to be met for x to be in the domain:
first, 1 — x2 > 0; second, x # V1 — x2. The first condition implies
x? < 1, or equivalently, -1 < x < 1. The second condition is
not fulfilled if x = V1 — x2. Squaring this equation we obtain
x% =1 — x2, which is equivalent to x> = 1/2. The two solutions of
this equation are x = +1/ V2, but of them two, only the positive
one is a solution of the original equation x = V1 — x2. Thus the
domain is [-1,1/V2) U (1/V2,1].

The two coditions to be met for x to be in the domain are 4 — x? > 0
and 1 — V4 — x2 > 0. The first one reads x% < 4, ie, -2 < x < 2.
The second one implies V4 — x2 < 1. Both sides of this inequality
are positive, so we can square it to obtain 4 — x? < 1, i.e., x? > 3.
This holds either if x > \/5 orx < —\/3. Therefore, the domain is
[-2,-V3]U[V3,2].

The denominator vanishes if logx = 1, i.e,, if x = e. Since the
logarithm requires x > 0, the domain is (0, ) U (e, o0).

The condition to be met now is x — x> > 0. We can factor x — x2 =
x(1 — x), so the roots of the parabola are x = 0 and x = 1. Since
the coefficient of x? is negative, the parabola is positive provided

0 < x < 1. The domain is then (0, 1).

Three conditions need to be met: first, x > 0 because x is the
argument of a logarithm; second, logx # 0 because it is the
denominator; and third, 5 — x > 0 because it is the argument of a
square root. The second condition implies x # 1, whereas the third
one implies x < 5. Thus the domain is (0, 1) U (1, 5].

Exercise 1.2

(a) We know that f(—x) = —f(x) and g(-x) = —g(x). Then

(f+8)(=x) = f(=x) + g(=x) = =f(x) = g(=x) = =(f + g)(x),

so f + g is odd. Now,

(f&)(=x) = f(=x)g(=x) = [-f(W)][-8 (V)] = f(x)g(x) = (f&)(x),
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so f g is even. Finally,

(f 0 8)(=x) = f(g(=x)) = f( = g(x) = =f(8(x)) = =(f ° g)(x).

Thus f o g is odd.
(b) Now f(—x) = f(x) and g(—x) = —g(x). Then

(f +8)(=x) = f(=x) + g(=x) = f(x) - g(-x),
so f + g is neither even nor odd. As for the product,
(f)(=x) = f(-x)g(—x) = f(X)[-g(0)] = —f(x)g(x) = =(f&)(x),
50 f g is odd. Finally,
(fo8)(=x) = f(g(=x)) = f(=8(x)) = f(g(x)) = (f o )(x).
Thus f o g is even.

Exercise 1.3 (i)

fl=x )_(x)—2+1 —f(x).
The function is odd.
(ii)
(=x)?> = (=x) x?+x
f(_): (—X)2+1 :x2+1¢if(x)/
so the function is neither.
(iii) . .
Fl=x) = sin(—x) _ —ilzx sin x _ f().
The function is even.
(iv)
f(=x) = cos ((—x)?) sin ((—x)z)e‘("‘)4 = cos(—x®) sin(x2)e ™" = cos(x?) sin(x2)e ™" = f(x).
The function is even.
(v)

1

1
VEx)2+1-(-x) V2 l+x

so the function is neither.

f(=x) =

(vi) This function is the logarithm of the function in the previous item,
so it seems that it has no defined parity because

f(=x) =log( x2+1+x).
However,

( x2+1+x)(m—x)

2 2
x“+1—x 1
x2 +1+x = = =

x2+1-x Viltl-x Ve2+l-x
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SO

= —log (m—x)

f(—.X') = 10g( x2+1+ X) = 10g (ﬁ)

The function is odd.

Exercise 1.4

(a) An easy way to check for injectivity is to determine whether the
equation y = f(x) has a unique solution for those y for which it
can be solved.

(i) Foreveryy € R,
y=7x-4 = x=-——.

So there is a unique solution no matter y, which means that
the function is injective.

(ii) Onlyif -1 < y < 1 the equation
y =sin(7x — 4)

can have a solution. On the other hand, two points x; and
x5 such that 7x, —4 = 7x1 — 4 + 2nm, with n € Z, are both
solutions of the same y. Clearly x, = x; + 2nn/7. Therefore
there are infinitely many solutions for each —1 < y < 1, which
means that the function is not injective.

(iii) For any y € R,
y=x+1°+2 = x=(y-2Y-1,

so the solution is unique and the function is injective.

(iv) Take y so that
x+2

y=3+1

Then
yx+1)=x+2 = y-2=x(1-y).
Thus, provided y # 1, we obtain

_y=2
=1y
and the solution is unique. The function is injective.

(v) Take y and solve for y = x> =3x +2,0r x> —=3x +2 —y = 0.

Then
3£49+4(y—-2) 3x44y+1
x = 7 = 5 .
The equation has a solution only if y > —1/4. But for all

y > —1/4 there are two different solutions. Therefore the
function is not injective.

A Solutions to Exercises

= —f(x).
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(vi) Consider the equation

_x
xX2+1°

y

If y = Othe only solutionisx = 0.If y # 0itcanbe transformed
into
yx*+1)=x = yx*-x+y=0.

The solutions of this quadratic equation are

C1xT-42
X—T.

There is solution only if y? < 1/4,i.e., —1/2 < y < 1/2, but
for every —1/2 < y < 1/2 there are two different solutions for
the same y, hence the function is not injective.

(vii) For every y > 0,
y=e* = logy=-x = x=-logy.

The solution is unique and the function is injective.

(viii) For every y € R,
y=log(x+1) = e/=x+1 = x=eY-1

The solution is unique and the function is injective.

(b) The solutions of the equation y = x2 — 3x + 2 are (see previous

item)
344y +1
X=——
2

Clearly one solution is larger than 3/2 and the other is smaller than
3/2. Therefore, if we limit the domain to those x larger than 3/2
only one solution survives and the function becomes injective.

(©)
(i) There is a unique solution for every y € R, therefore the
function is surjective, hence bijective.

(ii) Not surjective because the range is [-1, 1].

(iii) Surjective and bijective.

(iv) Not surjective because y = 1is not in the range of the function.
(v) Not surjective because the range is [-1/4, ).

(vi) Not surjective because the range is [-1/2,1/2].

(vii) Not surjective because the range is (0, o).

(viii) Surjective and bijective.
Exercise 1.5 1. Since sin(2x — n) € [-1,1],
min f(x) = -3+1 =-2, maxf(x)=3+1=4, A =maxf(x)-min f(x)=4-(-2)=6.
2. The inner argument 2x — 1 has period 27t. Hence

20x+c)—-m=2x—-m+2M = Cc=T.
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3. Write
2x—n=2(x—§),

so the graph is shifted to the right by 7.
4. Compared to 3 sin2x, the graph is moved up by 1.

Exercise 1.6 1.

sin(x + %) = sinx cos 5 +cos x sin 7 = cos X.

cos(x — %) =cosxcos 5 +sinxsin g = sinx.

Hence sin x and cos x differ by a phase-shift of Z.
3. From the double-angle formula cos 2x = cos(x+x) = cos® x —sin? x,

we get
cos® x +sin® x = 1.
4. Again from cos 2x = 2 cos? x — 1, we solve for cos? x:
s 1+ cos2x
cos”x = ———

5. Since sin? x = 1 — cos? x, it follows that

1+cos2x 1-—cos2x
2 B 2

sinx=1-

Exercise 1.7
3

2co0sx—-3=0 = cosx=3.

Since % ¢ [—1, 1], there are no real solutions in [0, 27).
Exercise 1.8 Use GeoGebra to help you with this exercise.

Exercise 1.9 Here are some hints to help you plot these functions:

(i) Start off with the plot of g(x) = x?; function f(x) = g(x +2) — 1, so
shift the plot two units to the left and one unit down.

(ii) Start off with the plot of ¢(x) = v/x and then tranform it into that
of h(x) = V—x by reflecting it on the Y axis. Then f(x) = h(x — 4),
so shift this plot four units to the right.

(iii) Start off from the plots of g1(x) = x? and g»(x) = 1/x. Near x = 0
g1 is negligible with respect to go —which diverges to oo at x = 0.
Far from x = 0 it is g» that is negligible with respect to g1, which
grows indefinitely. So f(x) is close to g2(x) as x ‘moves’ toward 0,
and close to g1(x) as x goes far awat from x = 0. Sketch the plot of
f(x) using this information.

(iv) Start off with the plot of ¢(x) = x? and shift it up one unit to get
that of h(x) = x? + 1. Then f(x) = 1/h(x). Since h(x) > 1 for all
x # 0 and h(0) = 1, then f(x) < 1forall x # 0 and f(0) = 1.
Besides, (x) grows indefinitely as x goes away from the origin, so
f(x) has to approach 0.

v) g(x)=x-x2=x(1-x),50 g(x) >0if 0 < x < 1and g(x) < 0if

A Solutions to Exercises
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(vi)

(vii)

x < 0or x > 1. Therefore

x?, f0<x<1,
flx)= .
x, otherwise.

e* is monotonically increasing and croses 1 at x = 0. Therefore

f(x):{ex_l' ifx >0,

1-¢%, ifx<DO.

All that needs to be done is to reflect the graph of e* — 1 (equal to
that of e* but shifted down one unit) for x < 0 on the X axis.
Let n be an integer and let us try to figure out where

e

1
nsz<n+1. (A1)

By definition

As we have mentioned above, f(x) will not be defined if n = 0.

This means all x such that

0<—<1.

R |-

The left inequality implies x > 0. The right inequality implies x > 1.

Therefore the domain of f is (—o0,0) U (0, 1].
Consider first x € (0, 1]. Then, according to (A.1) n > 0. From the
left inequality x < 1/n, and from the right one x > 1/(n + 1). Thus

1 1
n+1l'n

f(x)=% foralle( ], n e N.

In other words, f(x) = 1 for x € (1/2,1], f(x) = 1/2 for x €
(1/3,1/2], f(x) =1/3 for x € (1/4,1/3], etc. This covers the plot of

f(x) within the interval (0, 1]. By the way, the function gets closer
and closer to 0 as x approaches 0.

Consider now the interval (-0, 0). Then 1 in (A.1) must be negative.

Then the left inequality again implies x < 1/n and the right one
x > 1/(n + 1). The result is the same:

1

1
f(X) = ; forall x € (m, ;

], n € —N.

So we have f(x) = -1if x € (—oo,-1], f(x) = -1/2 if x €
(-1,-1/2], f(x) = -1/3if x € (-1/2,-1/3], etc. This covers the
whole interval (—o0, 0).

Function g(x) = x2 =1 < 0if =1 < x < 1 and g(x) > 0 otherwise,

SO
2

1-x%, if-1<x<1,
fo=1" |
x=—1, otherwise.

All that one has to do is to reflect the portion of the graph of x* — 1
in the interval (-1, 1) on the X axis.
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(viii) Plot g(x) = e*. The plot of g(—x) is just the mirror image with
respect to the Y axis. And that of —g(—x) is a new reflection with
respect to the X axis. Shift the whole plot one unit upward and you
will get the plotof f(x) = —g(—x)+1=1—-¢"".

(ix) The functionis defined only if | x| > 1. Besides, itis an even function,
so it will be symmetric with respect to the Y axis. Let us then focus on
the positive interval [1, 00). Notice that f(x) = log(x—1)+log(x +1).
These are two graphs of log x, the first one shifted one unit to the
right and the second one shifted one unit to the left. Since log x
grows very slowly but diverges at x = 0, near the point x =1
function log(x —1) will diverge and log(x +1) will then be negligible.
In oher words, f(x) ~ log(x — 1). On the other hand, when x is
large x £ 1 ~ x, so0 f(x) =~ 2log x. Plot f(x) using this information.

(x) As x grows far away from the origin (positive or negative) 1/x
becomes very small, so sin(1/x) approaches 1/x, and therefore
f(x) approaches 1. On the other hand, sin(1/x) oscillates wildly as
x gets near the origin, but x modulates the amplitude (making it
smaller the closer to the origin).

Exercise 1.10

(i) We use the identity x" —a" = (x —a)(x" '+ x"2a +x"3a% +-- - +
xa"? + a"1) and obtain

na

lim = lim
x—a X —4a x—a X —

(ii) We use the identity x —a = (\/_ - \/E) (\/E + \/E) and get

(iii) We can rewrite

(1—\/1—x2)(1+\/1—x2) () N
1+VI— 2 14V 14VI—2

2

1-V1-x2 =

Therefore

1-V1-22 P

lim ————— = lim =1 L

, 1
m — = —.
=0 x? H(’/f(lﬂ/l—xz) =014 VI - g2 2

(iv) We can rewrite

1 Vx +1 CVx+1

Vi-1o (Ve-1) (V1) x-1

Therefore

CoVx+1-2 . Ax-1
= lim = lim
x—1 x—1 -1 x—1

, 1 2 o [Vx+1 2
lim - = lim -

x—1 \/_—1 x—1 —1\ x—1 x—1
. x=T
th—:

x—1

1 1
lim —— = =.
(VX +1) (x—17 xl—>n}\/§+1 2

Exercise 1.11

x" —qg" e—ay(x" '+ x"2a + x" 3% + -+ xa" 2+ a" ) el
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(i) On the one hand, as x — oo,

x3+4x—7:x3(1+i—1)~x3.

xz X8
On the other hand,
7x2 = V2x6 + x5 = 7x2—x3\/g =x° (; - \/E) ~ V223
Therefore
Bdx -7 Pl 1

lim =1

im =—-—.
X220 732 _\2x6 1 x5 oo D 2

(ii) On the one hand, as x — oo,

.3 sin x>
x+sinx® =x |1+ ~ X
x

because | sin x3| < 1 for all x € R. On the other hand,
5x +6 ~ 5x.

Therefore 5 £
X +sinx 1
lim ———— = lim - = -.
oo Bx+6  iowB5f 5

(iii) As x — oo,

Jewd] - V- Y L
X +Jx +Vr = Vx T+ —yx+ =Vry[1+ P Vx,
thus

iV 25

(iv) This is an indeterminacy oo — oo, so we must transform

2 _ 2
— (\/x + 4x x) (\/x +4x+x) C Xidx-x? Ax

x2+4x +x x2+4x+x  VxZ4+4x+x

Now, as x — oo,

4
x2+4x+x=x(1/1+—+1) ~ 2x,
x
therefore

4 4
lim (\/x2+4x—x) lim— 2 _im ¥,

X—00 X—00 xz +4x +x X—00 zx -
Exercise 1.12

(i) Numerator and denominator are continuous functions in R, so this
function will be continuous except when the denominator vanishes.
It does when x? — 8x + 12 = (x — 6)(x —2) = 0, so f is continuous
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(ii)

(iii)

(iv)

v)

(vi)

A Solutions to Exercises

inR -{2,6}.
The function is the sum of a plynomial (continuous in R) and the

function e%*. The exponential is continuous everywhere and the
function 3/x too, except for x = 0. Besides,

lim /%

= 00,
x—0*

so f is continous in R — {0}.

Polynomials are continuous in R and so the tangent except when
its argument is an odd multiple of 7t/2. This means the points

nm—2
3

3x+2=nn+g = x = +%, ne<z.

f is continuous except at these infinitely many points.

Each piece of this piecwise function separately is a continuous
function, so we just need to check what happens at the joints. Thus,

lim f(x) = lim (x - 1) =0, lim f(x)= lim (|x| —x) =0,
x—1t x—1+ x—1- x—1~

SO

lim £(x) =0 = (1),

And
lim f(x)= lim (|x|-x)=2, lim f(x)= lim sin(nx) =0,
x—-1" x—-1* x—-1* x—-1"

so f(x) is continuous in R — {—1}.

Each of the three pieces of this piecewise function is continuous (a
polynomial or the absolute value of a polynomial), so we need to
check just the joints. Thus,

lim f(x)= lim (4x —5) =3, lim f(x) = lim |x*-1| =3,
x—2+ x—2* x—2- x—2"

SO
lim £(x) = 3= f(2)

And
lim f(x)= lim |[x*-1]=3, lim f(x)= lim x*=4,
x—-2" x—-2% x—-2+ x—-2"

so f(x) is continuous in R — {-2}.

The functions defining f(x) for |x| > 1 are both polynomials —
hence continuous. Within |x| < 1 it is defined as g(x) = x — [ x].
Now, g(x) =x+1forall -1 < x <0, g(x) =xforall0 < x <1,
and g(1) = 0. Thus function f(x) can be redefined as

(x-1)2%, x>1,
flx)=1x, 0<x<1,
x+1, x <0.

All three pieces are continuous (polynomials), so we must look at
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the joints. So,

lim f(x) = lim (x —1)*> =0, lim f(x) = lim x =1,
x—1* x—1* x—1" x—1"
and
1 = 1i = O, li =1 +1)=1.
xh—>ng+ f(X) xli%l* X anOl‘ f(X) XLI‘SI_ (x )

Therefore the f(x) is continuous in R — {0, 1}.

Exercise 1.13

(i) Denoting f(x) = x> — 18x + 2, a continuous function in R, we have
f(=1) =21, f(1) = —15, so Bolzano’s theorem guarantees at least
one zero in [—1,1].

(ii) Denoting f(x) = x —sinx — 1, a continuous function in R, we have
f(0) =—-1and f(nr) = m—1 > 0, so Bolzano’s theorem guarantees
at least one zero in [0, 7t].

(iii) Since e > 0, we know that e* +1 > 0, so the equation cannot have
any solution in R.

(iv) Since -1 < cosx < 1 for all x € R, the equation cos x = —2 cannot
have any solution in R.
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A.2 Derivatives

Exercise 2.1

(i)
W (x) = f)f'(x) + 8(1)g"(x)
V() + g(x)?
(ii)
e = L S ERW -0 fgt) — f)g'(x)
(f(x))2 g(x)? fP+gx)?
1+|——
g(x)
(iii)

W (x) = £/(8(x) g (x)e/ P+ £ (g(x)) f(x)ef ™ = [ £/(8(x)) 8 (x) + f (g(x)) f/(x)] /.

(iv) First of all h(x) = log (g(x)) + log (sin f(x)), so

_ 8 fx)cosflx) _ §'(x)
g(x) sin f (x) g(x)

(v) We first write f(x)8™) = exp {g(x) logf(x)}. Then

fx)
- [seoron o+ L g

= F(x)¥@ ¢ (x) log f(x) + g(x) f/(x) f(x)S)1.

h(x)

+ f'(x) cot f(x).

(x) = [g'(x)logf(x) + exp {g(x)log f(x)}

1 S0 +28(0)8" ()

W(x)=-
v [log (F(x) +g(x)?)]  f)+8(x)?

Exercise 2.2
c
(i) f'(x) = ——, therefore
X
c ¢
xfl+f=—-=+==0.
frf=-7+3
(i) f'(x) = tanx + x(1 + tan® x), therefore
Xf'—f—f2 =xtanx + x2 — x*tan?x — xtanx — x> tan® x = x2.

(iii) f’(x) = 3c1cos3x —3cysin3x and f”(x) = —9¢1 sin 3x —9c; cos 3x,
therefore

f"+9f = —=9c¢1 sin3x — 9¢; cos 3x + 9(cg sin 3x + ¢ cos 3x) = 0.
(iv) f'(x)=3c1e® —3ce™* and f”(x) = 9c1e> + 9cpe 3%, therefore

f"-9f = 9c1e% 4+ 9cre7% — 9(c1e%* + cre7%) = 0.
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(V) f/(x) =2c1e® +5c2¢°* and f”(x) = 4c1e?* + 25¢2€°*, therefore

f"=7f +10f = 4c1e% + 250065 — 7(2c1e% + 5c26%%) + 10(c1e?* + ce%)
= (4 - 14 +10)e** + (25 - 35 + 10)e>* = 0.
e—x

(vi) f'(x) = Qe —e™ and
T ocreX +ex

f//(x) - =1

(cre™ +e™)? — (cre¥ —e ™) cret —e*\?
(cre¥ + e~X)2 - ’

therefore

” o cie* —e™* 2 cie* —e™* 2
Frogp = )+ | -0

cie¥ +e*
Exercise 2.3

1
(i) Differentiating f(x) = arctan x + arctan Y

Lo, 1\ 1 LI
1+ x2 1 x2)  14+x2 X241
1+ -
x
Therefore f(x) = ¢, a constant. To find out which constant we

must evaluate f(x) at any point x > 0, say x = 1. Then f(1) = ¢ =
arctan1 + arctan1 = 27t /4 = 7t/2.

1+
(i) Differentiating f(x) = arctan 1 al

—arctan x,

1 l-x+1+x 1 2 1

(1+x)2 1-x2  1+22 (1-xP2+(1+x)?2 1+22
1

f(x)

1-—x
2 1 2 1

T-2x+x2+1+2x+x2 1+x2 2+2x2 1442

Therefore f(x) = ¢, a constant. To find out which constant we
must evaluate f(x) at any point x < 1, say x = 0. Then f(0) = ¢ =
arctan1 + arctan 0 = 7t/4.

2
(iii) Differentiating f(x) = 2 arctan x + arcsin sz,
x
() = 2 N 1 2(1+ x%) —2x - 2x
T 1+x2 o \2 (1+x2)2
1=
(1 + xz)
_ 2 1+ x? 21-x%) 2 . 2(1 - x?)
T+x2 A +222 —4x2 (14222 1427 (1 4+ x2)/(1 - 22)2
2 2(1 - x?) 2 2

=0,

= =+ — —

@ 1+x2 (1+x2)x2-1) 1+x2 14«2
where in (*) we have used the fact that x > 1 implies that
V(1 —x2)2 = x2 =1 > 0. Therefore f(x) = c, a constant. To find
out which constant we must evaluate f(x) at any point x > 1, say
x =1.Then f(1) = ¢ =2arctan1 + arcsin1 = 21/4 + /2 = 7.
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Exercise 2.4 If we calculate f'(x) = 1+ 1(sin x)72/% cos x we observe that
this function diverges whenever sinx = 0, i.e., for x = nm withn € Z.
Those are the points where the tangent straight line is vertical.

Exercise 2.5 Let us calculate the derivative on the left, f/(07) and on the
right, f'(0%). Since f(0) =0,

FO-fO_ 1
X Tan0 1telr i ltel
FO-fO) 1 1
X

Iim —— =
x—0+ 14+ el/x  too01+et

o) = i

7

f'(0") = lim

x—0*

So the slope of the tangent on the left is 1 —hence it forms an angle 71/4

with the X axis— and that on the right is 0 —hence it is parallel to the X
axis. Thus the angle between both tangents is /4.

Exercise 2.6 The domain of this function requires that x +2 > 0 and
-1 < x +2 < 1 be satisfied simultaneously. This happens for x such that
0 < x +2 < 1, in other words, for x € [—-2, —1]. Within this domain the
function is continuous because so are x + 2, \/E, and cos x —hence its
inverse— in their respective domains.

About differentiability,

Flx) = arccos(x+2)  Vx+2 arccos(x+2) [  x+2
2Vx+2 1= (x+2)7 2Vx +2 -3 —4x —x%’

which diverges when x = -2 and is defined only if x? + 4x + 3 =

(x+1)(x+3) < 0. This happens for x € (=3, —1), an interval that overlaps

with the domain excluding the point x = —1. Thus the derivative exits
only for x € (-2,-1).

Exercise 2.7 Function f(x) will be differentiable if and only if ax?—x+3 >
0forall x € Rorax?—x +3 < 0 for all x € R. The reason is that in
either of these two cases the parabola does not cross the X axis or it just
touches the axis at one point (it is only if the parabola crosses the axis that
its absolute value generates points with no derivative). The condition
for this to happen is that the discriminant of the parabola be < 0, i.e.,
1-12a < 0. Thus a > 1/12.

Exercise 2.8 Function f(x) is even, so it is enough to make sure that it is
continuous and differentiable at x = ¢. The function will be continuous
atx =cif

a+bc?= 1
c

On the other hand, for x > 0 the function is

a+bx?, 0<x<cg,

flx) =
-, x>,
X

so its derivative will be

f@=1

A Solutions to Exercises
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and therefore f(x) will be differentiable at x = ¢ if

1 1
2bc = —= = b=-——.
c? 2c3

And from the previous equation we obtain

Exercise 2.9 The two pieces defining this function are continuous and
differentiable within their respective sets, so the only critical point is
x = 1. Let us first check the continuity at this point. So

lim f(x) = lim ~ =1 lim (x)—11m3_x2—1
x—>1+f - x—1t X o x—»l‘f h x—1" 2 o

hence

lim £(x) = 1= £(1),

which proves that the function is continuous also at this point. As for
differentiability,

A Solutions to Exercises

. fx)=f@) .o1-1 . 1—x
’ +\ S SV X — - r
fa7) = lim —— Jm g T oy Y

2

pn o f@=-f)  FHE-1 1 (1—x)(1+%)
fa=lim == = m == Im ey T i e o

zlimM:—

x—1- 2 !

so f is differentiable at this point and f’(1) = —1. Summarising, f is
continuous and differentiable in R.
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A.3 Taylor Expansions

Exercise 3.1

(i) There are two ways to solve these exercises. The first one amounts to
applying Taylor’s formula for P, ,(x). For the case of f(x) = e* sinx

we have
f(x) =e*sinx, f)=0,
f'(x) = e*(sinx + cos x), f(0)=1,
f”(x) =2e" cosx, £7(0) =2,
f"(x) = 2e*(cos x —sinx), £7(0) =2,
f(4)(x) = —4e“sinx, f(4)(0) =0,
f(s)(x) = —4e*(sinx + cos x), f(5)(0) = —4,
thus s 5
x> x
Pso(x) = x + x> + 3 30

The alternative way —the one we will follow here— amounts to
relying upon known Taylor expansions and operate with them. For
instance in this case we know that when x — 0
2 43 a4 45 3,5
X xtox x> x

e = 1+x+—+—+=—+—+0(x°), sinx = x——+—+0(x°),

2 6 24 120 6 120
therefore, multiplying the two expressions —and collecting any
power higher than x° as 0(x>)— we obtain

¥z x3 xt xS B3 45
Tsinyx=|1+x4+=—+—+=—+—+o0(x° 4 o(x®
¢ smx Yttt TOW)| ¥ g W)
o X 5 2 }CZ/ 5 S 5
=[x-—+ + + |[x° - £+ +|l=-=+
Y=+ o(x) X =7 o(x) > o(x)
5
X 5 X 5
+762/+0(x) + 24+o(x)}
1 1 1 1 1
=x+x2+ |-+ |—=+=-—= x5+0(x5)
2 6 120 24 12
3.5
2, XX 5
=x+xT+=—-=+ ,
XX T g o)
and we get to the same result.
(i) Now
§ 2x)>  (2x)* 2
e = 1—x2+%+0(x5), cos2x = 1—%+%+0(x5) = 1—2x2+§x4+0(x5),

so multiplying and collecting equal powers,

—x? 2, X 5 2,2 4 5
e cos2x =|1-x +?+o(x) 1-2x +§x + 0(x°)

1 2
=1—(1+2)x2+(§ +2+ g)x4+o(x5)

19
=1-3x2 + zx“ +o(x®).
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Thus 19
P5,0(X) =1- 3x2 + ?X4.

(iii) Using the trigonometric identity
. 1. .
sin @ cos ¢ = 3 [sm(@ + ¢) +sin(0 - (p)]
we can write
. 1 . .
sin x cos2x = 5 (sin3x —sinx).

Now, since for z — 0

3 5

sinz:z—%+1270+0(25),
then
1 9 81 5x°
sinxcostzE 3x—§x3+4—0x5—x+%—1xTO +o0(x°)
(iv) In this case
2 3 44 45 P R .
V= l4xt—+—+—+—+0(x°), log(l-x) = —x—————-"—— —+o(x%),
¢ =gt T o) eg(lmn) = mam o)
0
2 .3 .4 2 .3 .4
e*log(l-x) =—x 1+g+%+xz+%+o(x4) 1+x+%+%+§—4+o(x4)]
1 1 1 1 1 1 1
=—x|1+1+=|x+|zc++o |2+ |c+-+2+2]28
2 2 2 3 6 4 3 4
1 1 1 .
—+—+ -+ -+ =|x+
(24 1276 1 5)x O(X)}
3 4 89
:—x—§x2—§x3—x4—@x5+o(x5)
Therefore
3 4 89
Psp(x) = —x — §x2 - §x3 -t - ﬁxS.
(v) Since sin? x = (1 — cos2x)/2,
1 2x)*  (2x)* 4
sin2x=§ X—Z+%—%+o(x5) =x2—%+o(x5),
hence
o
P5,0(x) = x2 — ?

(vi) We know that

1 (o]
= n_ 2 o
12 Eoz =14+z+z°+ ,
n=|

therefore ,
—— =1+ +0(x),
= (x7)
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which implies Ps o(x) = 1+ x°.

Exercise 3.2 The Taylor polynomial Py 4(x) of P(x) = x*—5x3+x%—3x+4
is obtained through

P(x) = x* —5x% + x> - 3x +4, P(4) = -56,
P’(x) = 4x — 15x% +2x - 3, P’(4) =21,

P”(x) = 12x* — 30x +2, P”(4) = 74,
P”(x) = 24x - 30, P (4) = 66,
PW(x) =24, P@(4) = 24.

Hence

P(x) = =56 + 21(x — 4) +37(x — 4)* + 11(x — 4)> + (x — 4)*.

Exercise 3.3

(i) The polynomial must be expressed in powers of t = x + 1, so if we

write
1 1 1 5 .
P 1—t_1 t—t "+
we immediately obtain Py, —1(x) = =1—(x+1)—(x+1)2—- - -—(x+1)".
(ii) Since
-2x (—296)2 (_zx)n—l n-1
=1+ (-2x)+ b ——— 4
¢ (20 + = - o)
2 p 2! 1 1
=1-2x+2x"+---+(-1)"" X"+ o(x"
() g o)
then
n-1
xe P =x —2x2 423+ + (—1)”‘1mx" +o(x™).
Thus
2n—1
Pho(x)=x—2x*+2x3 + -+ (-1)" 1 ——x".
’ (n-1)
(iii) We can expand (1 + e*)? =1+ 2¢* + ¢%¥, s0
2 x? x" n (2x) (2x)" "
(1+e*)"=1+2 1+x+?+-~~+—'+o(x )|+ 1+2x+T+--~+—|+o(x )
n! n!

242"
=4+4x+3x2+---+7x”+0(x”),

from which

242"
n!

Pn,O(X)=4+4x+3x2+...+ X"

(iv) We must express the polynomial in powers of t = x — 7, therefore
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sinx = sin(mt + t) = —sint, and
t3 t5 2n-1 on_1
inx=—t+———+--+(-1)"—— + o(t7"7).
smx 6 120 S v s TG
Thus
_ _ (x-n (x-np (=Pt
Pon (%) = Pon-1,n(%) = —(x=m)+ — ===+ +(-1) NV

Exercise 3.4 Since sinx = x + o(x), then f(x) = 1+ x* + o(x*), when
x — 0. Thus Pso(x) = 1+ x*. Accordingly f has a local minimum at
x=0.

Exercise 3.5

(i) Let us consider the function

(ii)

fx) =

1
Vitx
The value we want to obtain is f(0.1). The Taylor expansion for
this function near a = 0 follows from

flx) =1 +x)717 fO)=1,

’ _ 1 -3/ ’ _ 1
f(x)——§(1+X) 32, f(O)——E,
f//(x) — Z(l + X)_5/2, f//(o) — 2,
fr = =207, )=,

) = 220+ 0,

which implies

9
x 3 5 35 1
P —1-242x2-243 R =—|——| x*, 0<0<Ll.
3,0(x) S+ e 3,0(%) 128( ’—1+6x) x

Now P3(0.1) = 0.9534375 and since V1 + Ox > 1 for every x > 0,

35
|R3,0(x)| < @xél = |R30(0.1)] <2.7%x107°,

Hence 1/V1.1 = 0.9534(3) —where the figure in brackets may be
affected by the error. (The exact value is 1/V1.1 = 0.953462589.. .. .)

Consider the function f(x) = V27 +x =. Then V28 = f(1). To
ontain the second degree Taylor expansion around a = 0 we

calculate
flx)=@7+x)"3, £(0) =3,
f0) = 527+ 07, O = o,
frR==3@ 0, 0=

" _ E -8/3
f (X) - 27(27+x) 7
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from which
2 3
5
Poo¥) =3+=51,  Rpgl¥) = r———, 0<O<L.
(«/3 27 + Qx)

Now P 9(1) = 3.03657979 and since V27 + Ox > V27 = 3 for every
x>0,
|Ro,0(x)| < 57 [Ro0(1)| < = 0.9408x107°

20 531441 20 531441 '

Hence V28 = 3.0365(8). (As a matter of fact V28 = 3.036588972. . .)

(iii) Taking now f(x) =log(1 + x) the fourth-degree Taylor polynomial
is

x2 a3 xt
Piop=x— —+— - —
WEXT T Ty
For x = 1/2 we have
1 1 1 1
Pyo(1/2) = 273 + i 0.4010416666666 . . .

Now the fifth derivative is f*)(x) = 24(1 + x)™ which has a
maximum value of 24 in (0, 1/2) at x = 0. Hence,

s5_1s

24
IRgo(x)| <z = zx7,

5! 5
and

11
Ryp(1/2 =— = 0.00625.
[Rao(1/2)] < 5 35 =0.00625

Therefore we can write log(3/2) = 0.40(1). And in fact the true
value is 0.4054651081081644.. . ..

Exercise 3.6
(i) Since forx — 0
2 2 3

X X2 x
cosx:1—3+o(x3), e":l+x+?+z+o(x3),

then
3

P3,0(x) =24+x+ %

(i) First of all (cosx)® = cosx and (e¥)® = e¥, so f@(x) = f(x).
Therefore

cos Ox +e%*

<0 <1.
o x*, 0<6

R3o(x) =

Now | cos 0x| < 1and e%* < max{e*,1}. Thusfor-1/4 < x < 1/4

[Rs,0(x)| <

T+e4 (1)
22 (Z) =3.72x 1074

Exercise 3.7 The reminder of the Taylor expansion of f(x) = e* around
a=0is 0
X

e
RH/O(X) = mx"“, 0<06<1,
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so an upper bound for -1 < x < 1 will be

e
Rl < oy

If we want to have three exact decimal places the error should be smaller
than 1073, so we must look for the smallest 2 for which (n + 1)! > 10.
Since 6! = 720 and 7! = 5040 then n = 6.

Exercise 3.8
(i) To begin with

1
f(x) =sin*x = 5(1 — cos 2x),

and since
2n

n
= R
cost = Z( 1) (2n)' teR,
substituting we obtain

& x| 1
1- )=z
l HZ::‘)( ) (2n)! 2

2n

n+ly m-1 X
(-1 )y’ x € R.

B o0 n(zx)Zn B 1 - ; x2n
flx) = -1 W] = 5;(—1) 122 @)

n=1

NI =

Mg

Il
—_

n

(i) We can rewrite

1+x 1 1
f(x) =1log i Elog(1+x)—zlog(l—x)

and use
log(1+1) = Z( 1)”+1 , <1,
n=1
to obtain
18" &= +1
flx)=> Z( Pyt +-ZX—=Z[( ) o<1
n=1 noo2s=3n 5 n
But
(-1)"1+1 |1 ifnisodd,
2 “ |0 ifnis even,
Therefore
© x2n+1
=3 5, Idl <1
n=0
(iii) We can rewrite
X 1
f& a 1+bx/a

Now since



then

bl’l

F) =2 S Tt = D) e = S
n=0 n=0 n=1

(iv) We can express

1 1 1S (22" & «2
f(x)_il—XZ/Z_EZ(T) _Zan’

n=0 n=0

and the converge requires x%/2 < 1, i.e., |x| < V2.

n-1
l b

an

X

n

A Solutions to Exercises
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b

1
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A.4 Local Behavior of Functions

Exercise 4.1

(a) f is continuous in R because so are polynomials and the absolute
value function. As for differentiability, we can express f in a
piecewise description as

) 4x3 —x* -1, 0<x<4,
X) =
x*—4x3 -1, otherwise,

separating out the cases where x3(x —4) < 0 from those where
x3(x —4) > 0. Both pieces are differentiable (they are polynomials),
so we must check the joints. Since
) 12x2—4x3, 0<x<4,
X) =
4x3 —12x2, x <Oorx >4,
we have f’(0-) = f/(07) = 0, so f is differentiable at x = 0, but

f(47) = —64, and f’(4*) = 64, so f is not differentiable at x = 4.
Summarising, f is continuous in R and differentiable in R — {4}.

(b) First of all we need to look where f’(x) = 0. This means
4x*B-x)=0 = x=0, x=3.

If x < 0 but close to x = 0 then f’(x) = 4x?(x —3) < 0;if x > 0
but close to x = 0 then f’(x) = 4x%(3 — x) > 0. Therefore f has
a local minimum at x = 0. On the other hand, if x < 3 then
f'(x) = 4x?(3 = x) > 0 and if x > 3 then f’(x) = 4x?(3 — x) < 0, s0
f has a local maximum at x = 3.

But this is not the whole story because f is not differentiable at
x = 4 —hence x = 4 cannot be a solution to f’(x) = 0. We need
to check this point separately. Now, f(4) = —1, but for any x # 4
near x = 4 we have f(x) = [x*(x —4)] =1 > —1,s0 x = 4is a local
minimum.

Finally, —1 is the smallest value that f(x) can take, and f(0) =
f(4) = -1, so both, at x = 0 and at x = 4, function f(x) reaches
its absolute minimum. There is no absolute maximum though,
because the function grows indefinitely as x — =*oo.

(c) f(0) = -1 and f(1) = 2, so Bolzano’s theorem guarantees that
there is at least one solution to f(x) = 0 in (0,1). On the other
hand, in (0, 1) we have f’(x) = 4x?(3 — x) > 0 so the function is
monotonically increasing. Therefore the solution is unique.

Exercise 4.2

(a) The amount of material is proportional to the surface of the can,
which is given by the formula S = 2772 + 2rtrh. But cans have all
the same volume V = ntr?h, so h = V /nr? and thefore

S=2n(72+1).
r

A Solutions to Exercises
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(b)

(©)

A Solutions to Exercises

Minimising the surface amounts to minimising the function

f(ry=7r*+ %

This is a differentiable function for all r > 0, so the minimum is
reached at a solution of

1/3
Vi 72 3V [V
f'(r)=2r nrz_o = r—zn = r_(zn)
and 3
()"
r e

Lead is proportional to the surface. If the side of the square base
is a and the height /, then the surface will be § = a2 + 4ah. The
volume constraint, 32 = a2h, implies h = 32/ a2, so

S:a2+1§—8:f(a).

Now,

128
f’(a)=2a—F = a°=64 = a=4, h=2.

We can eliminate y = 20 — x, so the function to maximise is
flx) = x%(20 — x)3.
Now,
f/(x) = 2x(20—x)*—3x%(20—x)* = x(20—x)*(40—2x—3x) = 5x(20~x)*(8—x) = 0.

The two solutions x = 0, x = 20 clearly minimise the function. The
maximum is then x = 8 and y = 12.

If x is half the horizontal side of the rectangle, then

, x2
y:b 1—?

is half the vertical side. Then the area of the rectangle is

x2
A =4xy = 4bx l—a—z.

Maximising this area is tantamount to maximising

A? , xt
f(x)_@_x _E,

which means solving the equation
4x3 2x?
’ —
f(x)—2x—a—2—2x(1—a—2)—

One solution is x = 0 —which is obviously not the right one—
and the other two solutions are x = +a/V?2. Clearly the one that
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maximises the area has to be x = a/V2.

(e) The picture illustrates how to construct the described triangle:

()

e

-

We can select an arbitrary point on the parabola, (xo, 6 — x7). The
slope of the tangent at that point will be m = —2x( (obtained
differentiating 6 — x?), so the equation of the tangent straight line
will be

y=6—x(2)—2x0(x—x0) =6+x§—2x0x.

Now, this straight line meets the Y axis at A(0,6 + x%), and the X
axis at B ((6 + xé) /20, O), so the area of the triangle will be

6+x3)* 9 X3
=— 9 -2 43y +— = )
4x X0 3x0 4 f(xO)

Minimising the area means solving

fl(xo) = —5+3+—2
x

9 _ 3x; _ 3(xg +4x3 — 12) _ 3(x5 +6)(x5 - 2) 0
z 4 4x2 4x]

The only meaningful solution to this equation is xg = V2.

The area of the triangle at the base is >V/3/4, and that of the lateral
rectangles 3ah, so the total cost will be
3 2
C=020x QZ% +0.10 X 3ak = 0.10 x V3 (% + \/§ah) .

Since 128 = ha®V/3/4 we get V3ah = 512/a,so C = 0.10 X V3f(a),

where )
a 512
=—+—.
far=%+2

A Solutions to Exercises
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The value of 2 minimising cost will be a solution of

512
f()—a———O = =512 = a=8

(g) Foragiven 0 < x < 2 the corresponding y on the circunference is
given by

Y= V1i-(x =12 =+x2-x).
Thus, the three points of the triangle are A(0, 0), B (x, Vx(2 - x)),

C(x,0). The area of the triangle will thenbe S = x4/x(2 - x)/2 =
x%2(2 — x)1/2 /2. So maximising this area is tantamount to maximis-

ing
flx) = 48% = x3(2 — x) = 2x% — x*.
The corresponding x will be a solution of

f/(x) = 6x* —4x> = 2x*(3-2x) =0

The only meaningful solution is x = 3/2.

(h) Triangle similarity implies

y0+ﬁ:£ - xO]/O"‘ﬁ/:%""ﬁa N ﬁ:M

Xo+ X0 o

(i) The length of segment AB is

2

0=+ a2+ (o + BR = \/(xo Fap+ (y + OTy’O) \/(xo FapR+ %(xo +a)

So minimising ¢ is tantamount to minimising

Fla) = £ = (xo + a)? (1 ¥ @)
Differentiating

2

f'(a) = 2(x0+a)(1+y—) 2(xo + a)? 0—2(x0+oz)(1+ _O_yo_zé/)

=2(x0+a)(1—0—y0)—0.
0(

This equation has the solution

)1/3 xoyo _ (xz )1/3'

’ p= oYo

a = (xoy;
(ii) The sum of segments OA and OB is

f(oc)=x0+a+y0+ﬁ—x0+yo+a+07y0
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Differentiating

Yo¥o _ _ Xoyo _ (

f’(a) = 1—? 0 = a= (XOyo)l/z, B e X()yo)l/z .

(iii) The area of the triangle is

_1 _1 XoYo\ _ Yo (xo+a)® _ yo (X5
A—2(xo+a)(yo+ﬁ)—2(Xo+a)(yo+ " )—  Emraiic o s +2x0+al.

Minimising the area implies minimising

2
24 X,

(a)=— =—+2x+a.
f %o a
Differentiating

2
, X XoYo
f(a)=—a—g+l=0 = = Xy, ‘BZTy:yo.

Exercise 4.3

(a) For a =1 the inequality becomes a trivial equality. For a > 1 take

the function
fx)=Q+x)-1-ax.

Differentiating,
fx)=a(l+x)"1-a=0 = @1A+x)" =1 = «x=0,
so x = 0 is a local extremum. From the second derivative,
ffx)=a(@a-1)1+x)"2 = f"0)=a@-1)>0

we conclude that x = 0 is a minimum —the absolute minimum if
x > —1—, therefore f(x) > f(0) = 0 for every x > —1. This means

(1+x)">1+ax.

(b) Take the function
fx)y=e*-1-x.

Differentiating,
fllx)=e*-1=0 = «x=0,

so x = 0 is a local extremum. From the second derivative,
ffy=e" = f"0)=1>0,

we conclude that x = 0 is a minimum —which is absolute in this
case because there is no other one in R. Therefore f(x) > f(0) =0
forevery x € R, ie.,

e* > 1+x.

(c) Take the function

F(x) = log(1 + x) — ﬁ
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Differentiating,

1 1 X
’ = — = :O —3 :O,
) = Iy " Trar QP *

so x = 0 is a local extremum. From the second derivative,

L 2 1-x ” _
O x2 T a+xp axxp f70)=1>0,

fl/(x) —

we conclude that x = 0 is a minimum —which is absolute in
this case because there is no other one when x > —1. Therefore
f(x) = f(0) = 0 for every x > —1. This proves the first inequality.
As for the second, take

g(x) =x —log(l+x)
and differentiate:

1 X
’ :1— = :O =1 :O/
g'x) T+x 1+x g

so x = 0 is a local extremum. From the second derivative,

1
(14 x)?

f(x) = = f"(0)=1>0,

we conclude that x = 0 is a minimum —again absolute—, so
f(x) = f(0) = 0forevery x > —1. This proves the second inequality.

Exercise 4.4

(i)

(iii)

The polynomial f(x) = x7 +4x —3 ~ x7 as x — +09, 50 f(x) =
asx — oo and f(x) — —ooas x — —oo. Thus f(x) = 0 at at least
one point. What we need to know is to figure out how many times
f(x) bends up and down and from that determining the number
of times it crosses the X axis. Now,

flx)=7x+4>0

for all x € R, therefore f(x) increases monotonically. The conclu-
sion is that there is only one solution.

Similarly to the previous exercise, f(x) = x° —=5x + 6 ~ x° as

X — 00,50 f(x) > coasx — oo and f(x) = —oco as x — —co.
Thus f(x) = 0 at at least one point. Now,

fl(x)=5x*-5=0 = x==1,
and from the second derivative
f'(x)=20x = f"(1)=20>0, f’(-1)=-20<0,

so we conclude that x = —1 is a local minimum and x = 1 a local
maximum. But f(1) = 2 > 0 and f(-1) = 10 > 0, so the local
minimum is above the X axis. In conclusion, there is only one
solution.

f(x) = x4_4x3_1 ~ x4 as x — iOO,SOf(x) —_— oowhenx — 400.
It is not guaranteed that there is even a single solution. From the

A Solutions to Exercises
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derivative,
f(x) =4x® —12x% = 4x3(x - 3) =0

we conclude that x = 0 and x = 3 may be extrema. f'(x) < 0
around x = 0 (at both sides), so it is an inflection point. However,
close to x = 3 we have f’(x) < 0 for x < 3 and f’(x) > 0 for
x > 3, s0 at x = 3 the polynomial reaches its absolute minimum
f(3) = —28. Since this value is below the X axis, f(x) has to cross it
twice. Therefore there are two solutions to the equation.

(iv) The function f(x) =2x —1—sinx ~ 2x as x — *0c0,50 f(x) =
as x — oo and f(x) = —oo as x — —oo. Thus f(x) = 0 at at least
one point. Now,

f'(x)=2—-cosx >0 forallxeR,

so f(x) monotonically increases. Therefore there is only one solu-
tion.

(v) Let us first rewite the equation. Taking logarithms the equation
becomes
f(x)=xlogx —log2 =0.

f(1) =—log2 < 0and f(x) = o0 as x — oo, s0 f(x) vanishes at
one point at least. Now,

f'(x)=logx +1,

which is f’(x) < 0 for x < 1/e and f’(x) > 0 for x > 1/e. In
other words, f’(x) > 0in the interval [1, o), so f(x) monotonically
increases in that interval. Therefore there is only one solution.

(vi) Writing the equation
f(x)=x*+logx =0

we have f(1) =1 > 0,and f(x) ~ x? as x — +00, 50 f(x) — o0 as
X — =oo. There is no guarantee that the equation has even a single
solution in that interval. From the derivative,

1 2x2+1
fla)=2x+ - ==

X

we conclude that f'(x) > 0in (1, 00), so f(x) increases monotoni-
cally. Therefore the equation has no solution in that interval.

Exercise 4.5 Since sinx = x + o(x), then f(x) = 1+ x* + o(x*), when
x — 0. Thus Pso(x) = 1+ x*. Accordingly f has a local minimum at
x=0.

Exercise 4.6 Let us compute two derivatives of h:
W= (f'og)g', " =(fog)g"+(f'o8)g" = (f"og)(g'V+(f'08)3".
Since f is convex f” o g > 0; since f is increasing f’ o g > 0; since g

is convex ¢” > 0; and of course (g’)? > 0. Therefore h” > 0, hence  is
convex.

A Solutions to Exercises
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Exercise 4.7

(i) f(x)=x5/3-2x213,s0

f/(x) — §x2/3_éx—1/3, f/l(x) — 1_Ox—1/3+éx—4/3 — 1_0x—4/3 (x + =

3 9 9 9

Since x#/3 > 0 for all x # 0, then f(x) is concave for x < —2/5 and
convex in —2/5 < x < 0 and x > 0. At x = —2/5 it has an inflection
point, and at x = 0 the function has a nondifferentiable cusp.

(ii) f(x)is not differentiable at x = 0. Now, for x > 0

f(x) = xe*, f(x) = (x+1)e, f7(x) = (x +2)e*,

so the funtion is always convex. On the other hand, the function is
even (because f(—x) = f(x)), so it is convex also for x < 0.

(iii) x? —6x +8 = (x — 2)(x — 4), so the domain of this function is
(—00,2) U (4, o). On the other hand, in its domain

(x) = log(x*> —6x +8) = log|x* —6x +8| = log|x —2| +log |x —4|,
g g g g

SO

1 1 1 1

" f) = -G T oae

fix) = x—-2 x-4

and then we have f”(x) < 0 in the whole domain of the function.

Thus f(x) is concave.

Exercise 4.8

(i) f(x)=x+log|x?—1|:

(i) g(x) = f(|x[) h(x) = f(2)l:

A Solutions to Exercises
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10

10

Exercise 4.9

_ex’

(i) f(x) = e* sin x: this function oscillates between iy = ¢* and y
crossing the X axis at x = n7m, where n € Z.

x2—-1-1:

(i) f(x)=

-4

(i) f(x) = xel/*:



S0
8 6 4 2.7 2 2 6 8
I',// _2
Jr+1
/ -4
(iv) f(x) = x%e™:
\4
8
6
4
2
-2 10 8 6 -4 -2 o 2 4 6 8 10
-2
v) f(x) = (x = 2)x*/>:
Y
6
4
2

Vi) f(x) = (&~ 1) log(

1+x).

1—x

A Solutions to Exercises
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1.5

0.5

1.5

0.5

-0.5

-1.5

-0.5

-1.5

x
ogx’

18

16

14

12

10

(vil) f(x) =7

x?-1

(viil) f(x)=



-2
) el/x
(ix) f(x)= T3
\¢
0.5] !
-15 -10 -5 Oi 10
-0.5 '
ol
-1.5 E
(09 f(x) =log [(x = 1)(x - 2)]:
\&
o
| |
2| |
=10 -8 -6 -4 -2 4 6 8 10

ex

0d) fx) = 1
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y
40 i
30 E
20 E
10, E
ol |
-2 - 0 1 2 3 4 5 6
-20
(xii) f(x)=2sinx + cos2x:
Y
3
2
/
-3 2n - 0 14 2n
1
2
-3
-4

x—-2

(xiii) f(x) = :
4x2 +1



-3
(xiv) f(x) =+/|x —4]:
Y
\Z
1
0
-4 -2 0 2 4 6 8 10 12
-1
1
(xv) f(x)= T3 or
Y
15

-4 -2 0 2 4

-0.5

er
exX —

(i) £() = ——
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201

15

10

=X

(xvii) f(x) = e *sinx: this function oscillates between y = e¢™* and

y = —e™*, crossing the X axis at x = n7, where n € Z.

1
(xviii) f(x) = x*sin et this function has an oblique asymptote because

in L 1+0 ! (x = *+00)
s — = — — =00
X x x2

(given that sint = t + o(t?) (t — 0)); hence

flx) =

ol e

Therefore the function looks different on a small scale and on a
large scale. On a small scale it is an oscillatory function between
—x2 and x2 that crosses the X axis at x = i%, foralln € Z - {0};
on a large scale it asymptotes to y = x:

/ —-0.01

small scale

0.01

-0.2 0.2
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large scale

Exercise 4.10

(i) f(x)=min{log|x®-3|,log|x +3|}:

Y

S

-8 -7 -6 -5 - W2 3 4 5 6 7 8
. 1 1 . . .
(i) f(x)= m—_l—m:thls function has a different form for x > 1,
for0 < x < 1and for x < 0.
Forx >1 ] ,
f(x):x—l_x—1:O
For0 <x <1wehave|x -1 =—(x —1) s0
1 1 2
f& x—-1 x-1 x-1
Forx <Owehave|x| -1=—-(x+1)and |x — 1| = —(x — 1), so
1 1 2
f)=——=+ =

x+1 x-1 x2-1



A Solutions to Exercises 151

o= N W h o O N

o
e e L
N

1

(iil) f(x)= Tl Tl —d] (a > 0): this function also has different

definitions depending on whether x > 42,0 < x < a,or x < 0.
Forx > a

1 1 _ —a
1+x 1+x—a (x+Dx-a+1)

flx) =

which has two vertical asymptotes, x = —1 and x = a — 1, both out
of the region x > a.
ForO0<x <a

1 1 _ 2x—a
1+x l14a-x G+D)x-a-1)

fx) =

which again has two asymptotes, x = —1 and x = 4 + 1, both out of
the region 0 < x < a.
Forx <0

3 1 _ a
x l+a-x (x-1)x-a-1)

f) ==

which also has two asymptotes, x = 1 and x = a + 1, both out of
the region x < 0.
Here is a plot for a = 5 (which is generic):

1.5

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2

-0.5

-1.5
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(iv) f(x) = xVx2 —1: notice that

£ = a1 - 5,

and since V1 —t =1—-t/2+ o(t) (t — 0), when x — oo,

x2

2 X

£x) = 2] [1 o ( ! )] = 2lxl- o) = {"2 ~1+o(1) (x— ),

-x2 + % +0(1) (x — —0).

(v) f(x) = arctanlog|x? — 1|: when x — %1 the logarithm diverges to
—00, 50 f(x) = —m/2. In other words, even though the function is
not well defined in x = £1, at these two points it has an avoidable
discontinuity which can be remedied by setting f(+1) = —m/2.
On the other hand, as x — oo the logarithm diverges to co and
therefore f(x) — /2.

-8 -7 -6 -5 -4 -3 -2\-1 o0\ 1 2 3 4 5 6 7 8

-mn/2

2x
: the domain of this function is
1+ x2
R because so is the domain of arctan x and the argument of the

(vi) f(x)=2arctanx + arcsin
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arcsin is within [-1, 1]. To see this

2
x-12>0 & x¥*-2x+120 & x*+1>2 X <
x2+1
2
(x+1220 o x*+2x+1>0 & x2+1>-2x - <
x2+1
2 L
x2+1

if we calculate f’(x), using the fact that

( 2x ) _21 +x2) — (2x)> _ 2(1-x?)

1+ x2 (T+x22  (1+x227
we obtain
, 2 1 2(1 - x?)
+x 1 4 (1+x?)
(1+x2)2
But
1 4x? 14224+ xt—4x®  1-2x2 4+t (1-x2)
(1+x22 (1 + x2)2 o (1+a2)2 (1422
SO
Fx) = 2 (1+x2)‘2(1—x2): 2|, 1—x?
1+x2  [1-x2] (1+x2)2 1+2x2 [1—x2| |
Now
1-x2  J1, x| <1,
-2 -1, |x|>1,
therefore
4
—— k<1,
fla={1+x
0, |x| > 1.

Function f(x) is thus constant if |x| > 1 and strictly increasing if
|x| < 1. Besides, f(x) is obviously continuous because so are all
functions involved, so the constant values it takes for x > 1 and
x < —1 can be found as

T

+1) = +2arctan1 + +arcsinl = + 2-E+— = +T71.
f( Y
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A.5 Fundamental Theorem of Calculus

Exercise 5.1

(a) Changing x = —t,

1=/uf(X)dx=/af(—t)dt=—/uf(t)dt=—1 = 2[=0 = I=0.

(b) Using the same change,

[:f(x)dx:‘/Oﬂf(x)dx+‘[:f(x)dx:/Oaf(x)dx+/0u&2dt=2/Oaf(x)dx_
=f(t)

(c) Changingt =x - 8§,

‘/61051n(sir1 ((x —8)3)) dx = ‘[:Sin(sin (t3)) dt =0

because the integrand is an odd function.

Exercise 5.2 We will approximate each integral using n equal subintervals
and compare the results with the exact values.

@ [ 11(1 — x?) dx with n = 5 subintervals.
First, divide the interval [-1, 1] into n = 5 equal subintervals. The
length of each subinterval is

L _1=(D 2

=0.4.
5 5

The approximation of the integral by rectangles is given by
Ts = w (f(=1) + f(=0.6) + f(—0.2) + £(0.2) + £(0.6)) = 0.4+(0+0.64+0.84+0.84+0.64) = 1.28

The exact value of the integral is

1 371
SV DU RN RS D (NS
/_1(1 x)dx—[x 3}_1—(1 3) (1+3)—3~1.333.

() [ e~ dx with n = 3 subintervals.
The length of each subinterval is

" 3

1.
The approximation of the integral by rectangles is given by
T = f(=1)+ f(0) + f(1) = e' + 1+ ¢! = 4.086161269630487 . . .

The exact value of the integral is

2
/ e dx = [-e™*]%, = —(e72 — e') = 2.5829465452224323 . . .
-1

(c) /On sin x dx with n = 4 subintervals.
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The length of each subinterval is

The approximation is

V2 V2

T, = g (f(0) + f(r/4) + f(1/2) + f(3/4)) = g (o +—+1+ 7) = 1.8961188979370398 ...

2

The exact value of the integral is

Tt
/ sinx dx = [-cosx]j = 2.
0

Exercise 5.3 We will calculate each integral by interpreting it as the
signed area under the graph of the function. In each case, we recognize
the geometric shape and apply the appropriate area formula.

@ /31l dx
The graph of f(x) = |x| forms a "V" shape, symmetric about the
y-axis. This is made of two triangles, each with base 3 and height 3.
The area of one triangle is:

1 1
A= Exbasexheight=§><3><3=4.5.

Since the graph is symmetric, the total area is 2 X 4.5 = 9. Therefore,
the value of the integral is:

3
/ |x] dx =9.
-3
(b) f_33\/9—x2dx

The graph of f(x) = V9 — x? is a semicircle with radius 3 centered
at the origin. The area of a full circle is A = ir? = 1(3%) = 97, and
the area of the upper half of the circle (which is the region under
the graph) is:

9In

1
A=-X9=—.
27T

Therefore, the value of the integral is:

3 s
/ VO — x2dx = >
-3

© [ (2 -4) dx
The graph of f(x) = 5 — 4 s a straight line, and we are integrating
from x = 2to x = 5. This region forms a trapezoid. The height of the
trapezoid is the difference between the x-coordinates: h = 5-2 = 3.
The function values at the endpoints are:

4=

f@)= ;

~4=-3, f(5)=

NN
NG

The area of the trapezoid is:

1 1 3 1 9 27
A==-Xb1+by)xXh==X(3+—2)X3=-X—-2-X3=——.
5 X (b1 +b2) FX(BH-2)X3=o X5 x3=-
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Therefore, the value of the integral is:

/25(g_4)dx=_2z7.

@) [i@~Ix])dx
The graph of f(x) = 2—|x| forms a trapezoid from x = —1tox =0,
with area A; = 1/2 and a triangle form x = 0 to x = 2, with area
Ay = 2. The value of the integral is then A = 5/2.

Exercise 5.4 (i) For x < 1/2,

F(x):[:(%_t) dt=2+x2_x2 _ (2—x)2(1+x)

For x > 1/2,

1/2 X B
F(x)z[1 (%—t)du/l/z(t—%)dt:ZJr—(x 2)2(1”),

(ii) Forx <0,

F(x) = [f(—l) dt = -1—x.

F(x):[lo(—l)dt+‘/0xdt:—l+x.

Thus, F(x) = |x| — 1.

(iii) For x <0,
* 3+1
F(x) :/ P2ar=2"2
» 3

For x > 0,

Forx > 0,

0 X X X 3 3 _
F(x) =/ t2 dt+/ (t2=1)dt =/ t? dt—/ gr=XF1  _xosasl
-1 0 -1 0 3 3

(iv) Forx <0,

F(x):/_xdt=x+1.

1
For x > 0,

0 x x x 2
F(x)=/ dt+/(t+1)dt=/ dt+/ tdt=—+x+1.
-1 0 -1 0 2

(v) Forx < -1/2,

(1+x)?

F(x):[lx(1+t)dt: .

For-1/2 < x <1/2,

-1/2 1 [* 1 2x+1 4x+
F(x):/ (1+t)dt+—/ gr=t 2xrl_xts
» 2 ) 8 4 8
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Forx > 1/2,

“12 172 x Y
F(x)=/ (1+t)dt+1/ at+ [ a-par=3-0=2"
-1 2Jap 1/2 4 2

Exercise 5.5
3 X 2 x2
(i) F'(x) = o6 T
6x2
1+ sin? (x3)

(iii) F’(x) =2x/0 f(t)dt + x2f(x).

(i) F'(x) =

Exercise 5.6 f/(x) = e~ 1’ —¢=20=1) 56 f/(x) = O when (x—1)% = 2(x —
1),i.e,, when x = 1 or x = 3. Between those two values (x — 1) < 2(x — 1),
and for x > 3 the opposite holds. Therefore f’(x) > 0 for 1 < x < 3 and
f’(x) < 0 for x > 3. Thus there is a local maximum at x = 3 —which
is the absolute maximum. To obtain the absolute minimum we need to

obtain
x—1 x—1
1 -1
lim f(x) = lim (/ e dt —/ e dt) = ﬂ—lim - (1 —e—2<x—1>) _Vr > 0.
xX—0co x—oo | Jo 0 2  x—o0 2

Since f(1) = 0, the absolute minimum is reached at x = 1.

X
Exercise 5.7 Function f(x) = / et dt —1is an increasing function
0

because f'(x) = ¢* > 0. Further f(0) = —1. On the other hand, e’ >1

forallt > 0, so
1 ) 1
f(1)=/ el dt—1>/ dt —1=0.
0 0

Therefore f(x) = 0 has a unique solution in (0, 1).

Exercise 5.8 F(x) is a continuous function (is the difference of two
integrals) in [0, 1]. On the other hand,

0 1 1
F(0)=ZW—/ f(t)dtz—/ F(t)dt <0
0 0

(it is negative because f(x) > 0in [0, 1], therefore the integral is positive),

and
F(1)=2/1f(t)dt— 1 t)dt=2/1f(t)dt>0
0 0

(it is positive for the same reason). Since F(x) has opposite signs at the
extremes of the interval it must be zero somewhere in between. Thus,
the equation F(x) = 0 has at least one solution. To see that there are no
more solutions we differentiate

F/(x) = 2f(x) = f(x)(~1) = 3f(x) > 0.

Therefore F(x) increases monotonically in [0, 1], hence can be zero only
once in the interval.
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Exercise 5.9

) = 1 11 1 1

a2 +x2  x2a?+1/x2  a?+x%2 a?x2+17

so in order to have f’(x) = 0 for any x we need a = +1.

Exercise 5.10

(@) dt =2sin6cos 0 d0O = sin20 dO, therefore

1 /2 n/2
I= / arcsin Vt dt = / arcsin(sin 0) sin260 d6 = / 6sin20do.
0 0 0

We can now integrate by parts, where u = 0 and v’ = sin 20, and

then
0 /2 1 /2 1 /2
I =——cos26 +—/ c0526d6=z+—sin26 =E+O.
2 o 2o 474 o 4
Thus

1
T
/ arcsin Vt dt = —.
0 4
(b) Differentiating,
f'(x) = 2sin x cos x arcsin(sin x)—2 cos x sin x arccos(cos x) = x sin2x—x sin2x = 0.

Therefore f(x) is constant.

(c) We can calculate ¢ by substituting any value of x, for instance
x = 7t/2. Then

0 0

1 0 1
c=f(77/2)=/ arcsin\ﬁdt+/ arccos Vt dt =/ arcsin V¢ dt.
0

But this is precisely the integral we have obtained in (a), so ¢ = 7 /4.

Exercise 5.11

(a) With this change of variables the limits remain the same, so

I:/O xf(sinx)dx:/0 (m—y)f(sin (- y)) dy.

But since sin(nt — y) = siny, we have

1= [ -yseinpay=n [ fenpay -1

Thus i
I= E/ f(sinx)dx.
2 Jo

(b) Since
sin x sin x .
= = f(sinx
1+cos?x 2-—sin’x f( )
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we are in the situation described in the previous item. Hence

T xsinx n [* sinx nn " (cosx)
- Ly L R el
o 14 cos*x 2 Jy 14cos*x 2 Jo 14cos?x
2

s
= —g arctan(cos x)’0 = —g(—z arctan1) = T(Z

Exercise 512  (a) To find N(t), we need to integrate the differential

equation:

dN

e
Integrating both sides with respect to ¢, and knowing that N(0) =
100, we have:

t
N(t) = N(0) = / etdt=1-¢! = =N()=101 —¢".
0

(b) To compute the cumulative change in population size between
t =0and t = 5, we need to evaluate the change in N(t) over this

interval:
AN = N(5) — N(0).

We already know N (0) = 100. Now, calculate N(5):
N(5) = —e™° +101.
Using e~ ~ 0.0067, we have
N(5) ~ —0.0067 + 101 = 100.9933.
Therefore, the cumulative change in population size is:
AN =100.9933 — 100 = 0.9933.

Hence, the cumulative change in population size between t = 0
and ¢t = 5 is approximately 0.9933.

Exercise 5.13 We are given the velocity of a particle moving along the
X-axis as
o(t) = —(t -2 +1

for 0 < t < 5. We also know that the particle starts at the origin at time
t = 0. We will analyze the motion of the particle step by step.

(a) The particle moves to the right when its velocity v(t) is positive,
and it moves to the left when v(f) is negative. To find when this
happens, we first examine the graph and behavior of v(f).

The velocity function is:

o(t) = —(t-2)* + 1.

This is a downward-opening parabola with its vertex at t = 2 and
maximum value v(2) = 1. The roots of v(¢) = 0 occur when:

—(t=-2%+1=0 = (t-2°=1 = t-2==I,

which gives:
t=1 and t=3.
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Therefore, v(t) = 0att =1and f = 3.
Now, examine the sign of v(t):
-For0<t <1,0(t) > 0, so the particle moves to the right.
-For1 <t < 3,0(t) <0, so the particle moves to the left.
-For3 <t < 5,0(t) > 0, so the particle moves to the right again.
Thus, the particle moves to the right on the intervals 0 < t < 1 and
3 < t <5, and it moves to the left on the interval 1 < f < 3.

(b) The position s(t) of the particle is the integral of its velocity v(t)
with respect to time. Since the particle is at the origin at t = 0, we
have the initial condition s(0) = 0. Thus, we find s(t) by integrating

o(t):

s(t) = s(0) + ‘/Ot v(t)dt = /Ot (—(t—2)*+1) dr.

Let’s compute this integral:

S(t)=/0t(—(f—2)2+1) dr=/ot—(12—4f+4)+1df.

Simplifying:

t

t 3
s(t) = / (-1* + 471 -3)dt = [—T— +27% - 31} .
0 3 0

Evaluating the definite integral:

t3
s(t) = -3 2t — 3¢,

The location s(t) represents the net area under the velocity curve
v(t) from t = 0 to t. Positive areas (Where v(t) > 0) correspond
to the particle moving to the right, while negative areas (where
v(t) < 0) correspond to the particle moving to the left. The function
s(t) gives the cumulative displacement of the particle along the
x-axis.

Exercise 5.14 We are given the average daily temperature function:
T(t) = 57.5 —22.5cos(2mt),

where t represents the fraction of the year that has elapsed since January
1. We will solve the parts of the problem step by step.

(a) To find the average temperature over the year, we need to compute
the average value of the function T (t) over the interval 0 < t < 1.
The average value of a function over an interval [a, b] is given by:

b
Average value = L/ f(t)dt.
b-a ),

Here,a = 0,b =1, and f(t) = T(t). Thus, the average temperature
is:

1 1
Average temperature = / T(t)dt = / (57.5 — 22.5cos(27tt)) dt.
0 0



(b)
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We can split the integral:

1 1 1
/ (57.5 = 22.5cos(27tt)) dt = 57.5/ 1 dt—22.5/ cos(2mt) dt.
0 0 0

The first integral is straightforward:

1
/ 1dt =1.
0

For the second integral,
1 1 1
/ cos(2mt) dt = — sin(2ntt)| = 0.
0 2n 0

Thus, the average temperature is:
Average temperature = 57.5 X 1 —22.5 x 0 = 57.5.

We can observe that the function T(t) = 57.5—22.5 cos(27t) consists
of a constant term 57.5 and an oscillating term —22.5 cos(27t). Since
cos(27tt) oscillates symmetrically about zero over the interval [0, 1],
its average value is zero. Therefore, the average value of T(t) is
simply the constant 57.5, which is the baseline temperature. This
reasoning allows us to determine the average temperature without
performing any integration.

Summer corresponds to the interval 0.47 < ¢t < 0.73. To find the
average temperature during the summer, we use the formula for
the average value of the function over this interval:

1 0.73
Average summer temperature = 073 —0.47 A Y T(t)dt.

First, simplify the factor:

1 1

073-047 026
Now, compute the integral:
0.73 0.73
/ T(t)dt = / (57.5 — 22.5 cos(27tt)) dt.
0.47 0.47
Again, we split the integral:

0.73 0.73 0.73
/ (57.5 = 22.5cos(27tt)) dt = 57.5/ 1 dt—22.5/ cos(2mtt) dt.
0.47 0.47 0.47

The first integral is straightforward:

0.73
/ 1dt =0.26.
0.47

For the second integral, we need to compute:

0.73
/ cos(2mtt) dt.
0.

47
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The antiderivative of cos(27t) is % sin(2mt). Evaluating this from
t=047tot =0.73:

1
7 (sin(27t X 0.73) — sin(27 X 0.47)) .
Using a calculator, we find:
sin(2m X 0.73) ~ —0.5878, sin(27 X 0.47) ~ 0.5878.

Therefore:

0.73

1 -1.17
/ cos(27tt) dt = ——(~0.5878 — 0.5878) = —1720
0.47 21 27

Now, putting everything together, we find:

1 -1.1756
A t ture = —— [57.5 X 0.26 — 22.5 X .
verage summer temperature = o 5x0.26 5 =

Using 1t = 3.1416, this simplifies to:

Average summer temperature ~ 57.5 — 4.21 = 53.29°F.
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A.6 Differential Equations

Exercise 6.1 (a) ¥ = 4x2—16

» Rewrite the equation: % = 4(x% — 4) = 4(x — 2)(x +2).

» Fixed points: x =2 and x = -2.

» Stability: x = —2 is stable, and x = 2 is unstable.

» Graph of x(f): If xg < 2 then the trajectories approach 2, and
if xg > 2 they diverge to co.

(b) =1-x"

» Fixed points: x = +1.
» Stability: x = —1 is unstable, x = 1 is stable.
» Graph of x(¢):If xo > —1 then the trajectories approach 1, and
if xg < —1 they diverge to co.
() ¥ =x—x3
» Rewrite the equation: % = x(1 — x2) = x(1 — x)(1 + x).
» Fixed points: x = -1, x =0,and x = 1.
» Stability: x = —1 and x = 1 are stable, while x = 0 is unstable.
» Graph of x(t): If xp < 0 the system approaches —1, whereas if
xo > 0 the system approaches 1.

(d) x=etsinx

» Fixed points: x = nm for integers 7.

» Stability: Here ¥ = f(x, t) and the stability comes from df /dx
the partial derivative of f with respect to x considering ¢ a
constant. Since e™' > 0 for all ¢, the stability of the system is
the same as that of X = sin x. <

» Graph of x(t): Because e~ decays so quickly, even though
the only fixed points are x* = km for k € Z, the trajectories
remain very close to the initial condition for long periods of
time (see Figure A.1).

. t
(e) x=1+cosx
) ) ) Figure A.1: Trajectories for the differential
» Fixed points: x = 7 + 2nm for integers n. equation ¥ = ¢! sinx.

» Stability: The fixed points are all “mixed”: the derivative is
positive to both sides, which means that initial conditions
starting below the fixed points tend towards it, while those
starting above it are driven away from it.

» Graph of x(t): The derivative is always non-negative, which
means that x(t) is always growing. Initial conditions between
n+2nm and 142(n + 1)1 will grow towards x* = T+2(n+1)m.

(f) % =1 eco*

» Fixed points: x = 5 + n for integers 7.

» Stability: If 7 is odd in the set of fixed points above, the point
is stable. Otherwise, it is unstable.

» Graph of x(t): for n odd, all initial conditions between Z +
(n —1)mand 7 + (n + 1)rt tend toward 5 + nr.

(g) x =e* —cosx

» Fixed points: Fixed points occur where e* = cos x. The exact
values of x cannot be found explicitly, but graphically we see



there are infinitely many points between —co and 0, as e* is
between 0 and 1 in this interval, and cos x crosses the x axis
infinitely many times.

» Stability: Stability can be assessed qualitatively by observing
the slopes of e* and cos x.

» Graph of x(¢): similar to the previous case.

Exercise 6.2 (a) Here we show how to obtain the given formula (you

don’t have to do this! but in case you're interested in how to do it).

Dividing both sides by m, we get:

k
do _k e

P
This is a separable differential equation, so we can write:

dojdt

k.2
&~ m?

We can decompose the fraction in the left-hand side into partial
fractions as follows:

1 1 1 1
— k22 -
§=w?? 2| [z fEo-v7
1 fmk 1 1
= E —_— “+ .
S DY SRy L0 gy
Writing ¢ = %, we can express the left-hand side as:

dv/dt —ilo (c+v)
g — Lp2 C2g S\c—v/
The right-hand side is just ¢, so we have:

élog(iiz)ztwLC.

Using the initial condition v(0) = 0, we can solve for C:
c c
—log(<)=0 = c=o.
2¢ %812

Thus, the solution becomes:

o (C+U)—t
2¢ Ble—o) ="

Multiplying both sides by 2¢/c and exponentiating, we get

c+v
— eth/C s 40 = eth/cC _ eth/cv
c—0

A Solutions to Exercises
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Solving for v(t), we obtain:

v(t) B Cl _ e—th/c B % 1— e—Z\/gk/mt
T 14e2stlc N k 1+e—2\/ngt'

To find the terminal velocity, we take the limit as t — oo of v(#).

Since exp(—2+/ %k t) — 0ast — oo, we have:

mg
o =li t) = .
Po = e =\
Thus, the terminal velocity is Voo = ng

(b) As we can see in Figure A.2, 9 = 0 only when v* = 4/ %, the only
fixed point of the dynamics. If v > v* then ¥ < 0, and if v < v7,

then © > 0, so this makes v* a stable fixed point.

104

—10

—15

"4

Exercise 6.3  (a) The fixed points satisfy x(kia — k_1x) = 0 and there-
fore we have x] = 0 and x; = ak —1/k_1.Itis not hard to see that x]
is unstable and x is stable (this system is mathematically identical
to the logistic equation).

(b) The trajectories can be seen in Figure A.3. They are very similar to
those in the logistic equation (Figure 6.4).

Exercise 6.4 (a) a is the growth rate of the cancer, and b is the inverse
of the carrying capacity.

(b) There are two fixed points: N = 0 and N; = 1/b. The trajectories
are very similar to those shown in Figure A.3.

(c) If f(N) = —aNlog(bN) then f'(N) = —a(1 +log(bN)). The deriva-
tive does not exist when N =, but it’s clear that limy—o f/(N) > 0
and so N = 0is an unstable fixed point. However, f'(1/b) = —a <0
and so N = 1/b is a stable fixed point.

Exercise 6.5 (a) The equation is a parabola with a maximum at an
intermediate N provided thata,b,r > 0.If r > ab? the intercept is

A Solutions to Exercises 166

Figure A.2: Phase protrait of the differen-
tial equation & = g — k/mv?, showing the

. . _ mg
stable fixed point v = [/ 7=.

Figure A.3: Trajectories for the differential
equation X = kjax — k_q1x2.
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positive, which means growth is always positive. If r < ab? then
the intercept is negative, which means that for some N growth will
be negative.

(b) There are three fixed points: Ny = 0, N; = b — «/r/a and N} =
b + +/r/a. The derivative of f(N) = N(r — a(N — b)?) is

f'(N) =r —ab® + 4abN —3aN?,,
We have

f/(Ny)=r~- ab?,

r —ab?

F/(N3) = =2V (V7 = bva) = 2V
f(N3) = =2r (\/7+ 2b\/E) <0.

Note that f’(N3) is always negative (and hence the point is always
stable), but the behavior of the other two points changes whether
r > ab® or r < ab®. In the first case, the growth at N = 0 is positive
(check f(N)) and we have that N is unstable and N7 is stable, but
note that N, < 0 in this case and therefore it will never be reached
if N(0) > 0, which is the realistic scenario. This is called “weak”
Allee effect. In this case, the trajectories are very similar to those
in the logistic equation, only that the growth when N is small is
slower.

However, if r < ab?, then the growth when N = 0 is negative. N}
becomes stable and N; (which is now positive) turns unstable. In
this case, the trajectories are very different depending on the initial
conditions: if N(0) < N3, then the population becomes extinct,
whereas if N(0) > N, the population reaches the carrying capacity.
This is called a “strong” Allee effect.

The two cases are shown in Figure A.4.

weak Allee affect strong Allee affect
251 ____ 35 _____
20 3.0
2514

154
—_ — 20
-+~ -~
~ 1.0 ~
= = 15

Figure A.4: Trajectories for the differential
equation N = N(r — a(N - b)?), with r =
1,2 = 0.5,b = 1 (left, weak Allee effect)
t t and 7 = 1,a = 0.5,b = 2 (right, strong
Allee effect).

Exercise 6.6  (a) Two fixed points, x = 0 and x = 1. The derivatibe of
f(x)is f’(x) =1 - 2x which is positive for x = 0 and negative for

x=1

(b) Two fixed points, x = 0 and x = 1/2. The derivatibe of f(x) is
f’(x) = =1 + 4x which is negative for x = 0 and positive for
x=1/2.

(c) Infinite fixed points at x = kn, with k € Z. However, f'(x) =
1+ tan? x > 0 and so every point is unstable.
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(d) Three fixed points, at x = 0 and x = +V6. The derivative of f(x)
is f(x) = 12x — 4x® which is 0 at x = 0, positive at —V6 (unstable
fixed point) and negative at x = V6 (stable fixed point). Graphical
analysis shows that x = 0is a mixed fixed point: trajectories starting
between —V6 and 0 are drawn towards 0, whereas trajectories
starting at x > 0 are drawn towards \/6

(e) One fixed point at x = 0. The derivative of f(x) is f'(x) = e77%,
which is positive at x = 0.

(f) One fixed point at x = 1, the derivative of f(x) is f'(x) = 1/x,
which is positive at x = 1.

(g) Ifa > 0, there are three fixed points: x = 0, x = £v/a. The derivative
of f(x)is f'(x) = a —3x2, which is positive at x = 0 and negative at
both x = ++/a (stable fixed points). If 2 = 0 there is only one fixed
point at x = 0. The derivative is zero at that point, but a graphical
analysis shows that it is a stable point. Finally, if a < 0 there is only
one fixed point at x = 0 but now the derivative f’(x) = a — 3x? is
negative at x = 0, and so the point is stable.
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A.7 Linear Functions of Several Variables

Exercise 7.1 Since x = (x1, Xp) = x1e1 + Xoep, we have (because T is linear)
that

_ _ _ 2 -1 _ 2X1 — X2
T(x) = T(x1e1+x2e2) = x1T(e1)+x2T(e2) = x1 (5)+x2 ( 6 ) = (5x1 N 6x2)

In particular,
7
T(5,3) = ( 43)

Exercise 7.2 We will write the computations on the augmented matrix.

1.
2 1 6 1 -4 —4 1 -4 -4 1 -4 -4 10%
1 -4 -4 2 1 6 0 9 14 01% 01%
Thus, x = 20/9 and y = 14/9.
2.
5 2 8 (1 -3 -9 (10 &
-1 39/ lo 17 53/ (o 1 2
Thus, x = 6/17 and y = 53/17.
3.
1 -2 1 3 1 -2 1 3 1 0 -1 7
2 -3 1 8 0o 1 -1 2 01 -1 2
Thus, x =7 +z,y =2+ z,and z is free.
4.
2 -1 3 1 -1 4 1 -1 4
1 -1 4|~|0 1 =2|~|0 1 =2
1 -3 1 0 -2 -3 0 0 1
This system is inconsistent, as the last row implies 0 = 1, so there
is no solution.
5.
1 1 -1 1 1 -1 1 1 -1 1 0 2
2 -1 71]~]0 -3 9|~|0 1 -3|~]0 1 -3
1 -2 8 0 -3 9 0 0 O 0 0 O
Thus, x =2 and y = -3.
6.
2 -4 1 -1 1 2 -3 -9 1 2 -3 -9 1 0 0 -1
1 2 -3 -9|~|0 -8 7 17 |~|0 4 -11 -=-31|~|0 1 0 1/2
3 2 2 4 0 4 -11 -31 o0 1 3 0 01 3
Thus, x = -1,y =1/2and z = 3.
7.

5 -1 2 6 1 2 -1 -1 1
1 2 -1 -1|~|0 -11 7 11|]~(0 1 -1 -1|~]0
3 2 -2 1 o 1 -1 -1 0

—_
(@]
|
—_

Thus, x =1,y =-1land z = 0.
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Exercise 7.3 1.
1 3 4 7 1 3 4 7 1 3 0 -5
3 9 7 6 0 0 1 3 001 3

Thus, x = =5 -3y, y is free, and z = 3.

2.
1 4 0 7 1 4 0 7 10 0 -9
2 7 0 10 01 0 4 010 4
Thus, x = -9, y = 4 and z is free.
3.
01 -6 5 1 0 -5 4
1 -2 7 -6 01 -6 5
Thus, x =4 4+ 5z, y =5+ 6z and z is free.
4.
1 -2 -1 3 1 -2 -1 3
3 -6 -2 2 0o 0o o0 -7
and the system is inconsistent.
5.
3 -4 2 0 3 4 20
-9 12 -6 0]~(0 O 1 O
-6 8 -4 1 0 0 01
and the system is inconsistent.
6.
1 -3 0 -1 0 -2 1000 0 -1
0 1.0 0 -4 -1 01000 -1
0 0 01 9 4 00010 4
0 0o 0 0 1 O 00001 O
thus x1 = =1, xp = =1, x3 is free, x4 = 4 and x5 = 0.
7.
1 0 2 6 10 0 -3
01 0 4 01 0 4
0019 001 9
0000 000 O
Thusx = -3,y =4and z = 9.
8.
12 -5 -6 0 -5 10 7 0 0 -9
01 -6 -3 0 2 01 -6 -3 0 2
00 0 0 1 O 00 0 0 1 O
00 0 0 0 O 00 0 0 0 O
Thus x1 = — =9 — 7x3, x5 = 2 + 6x3 + 3x4, X3 and x4 are free, and

X5=0.

Exercise 7.4 1. The augmented matrix of the system is

2 3 h 2 3 h
4 6 7 0 0 7-2h)’
and therefore the system is consistent if h = 7/2.
2. The augmented matrix of the system is

1 -3 -2 1 -3 -2
5 h -7 0 h+15 3’



and therefore the system is consistent if /1 # —15.

Exercise 7.5 1. The augmented matrix of the system is

1 h 2 1 h 2

4 8 k 0 8-4k k-8J°
If h # 2, the system has a unique solution. If & = 2 but k # 8, the
system has no solution. Finally, if & = 2 and k = 8, the system has

infinite solutions.
2. The augmented matrix of the system is

1 3 2 1 3 2
3 h k 0 h-9% k-6|
If h # 9, the system has a unique solution. If & = 9 but k # 6, the

system has no solution. Finally, if & = 9 and k = 6, the system has
infinite solutions.

Exercise 7.6 1. The system is

X1+x=3
4x1+5x, =8
whose augmented matrix is

1 1 3 1 1 3 1 0 7
4 5 8 01 -4 0 1 -4}’
and the solution is (7, 4).
2. The system is

x1—2x2=—1
x1+3x, =4
39(?1—23(2=9

whose augmented matrix is

1 -2 -1 1 -2 -1\(1 -2 -1
1 3 4]~f0 1 110 1 1

3 -2 9 0 1 3/\0 0 2

and the system has no solution.

A Solutions to Exercises
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A.8 Matrix Algebra

Exercise 8.1 The standard matrix of T is

1 4 5
3 7 4
‘ (-4 0 2
Exercise 8.2 1 —2A= (—8 10 —4)
3 -5 3
2. B-2A= -7 6 =7

3. AC can’t be computed, since A is a 2 X 3 matrix and C is 2 X 2. The
dimensions don’t match.

113
4.CcD=|_,

16 -10 1

A+2B = 6 —13 -4

9 -13 -5
CB= -13 6 -5
EB can’t be computed since E is a 2 X 1 matrix and B is 2 X 3.

© N o =

Exercise 8.3 We have

23 -10+5k 23 15
AB_(—9 15+ k ) BA_(6—3k 15+k)’

so k must satisfy the two equations

-10+5k =15 5k =25
S
6—3k=-9 3k =15

which has as unique solution k = 5.

Exercise 8.4 We have
1 -7 1 -7
AB = (—2 14) AC = (—2 14) ’

The equality appears because det A = 0 and so there are infinite vectors

1
that satisfy Ax = (_ 5

-7
) and infinite vectors that satisfy Ax = ( 1 4).

. =2 -3
Exercise 8.5 1. (_5/2 4 )

=-2 1
2 (7/2 —3/2)

5 [ = 1 1
“\-7/5 -8/5
=2 1
4. (—7/4 3/4)
Exercise 8.6 If detA # 0, the system Ax = b has as unique solution
x = A71b. In these cases,

3C — E can’t be computed, since 3C is a 2 X 2 matrix and E is 2 X 1.

A Solutions to Exercises
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1 x=[= 2 =3\ (2} (1
T2 a1 T\
2. Here we need to multiply the second equation by —1, so that the coef-

.. .. . . =1 1 9
ficient matrix is the same asin exercise 8.4.1. x = (_7/5 —8/5) (_11) =
-2
5

Exercise 8.7 1. det (Z Z) = ¢b — ad = —det A, which means that

exchanging two rows changes the signs of the determinant.

(a+kc b+kd

2. det = ad — bc = det A, which means that substi-

d
tuting one row by a linear combination of rows from the matrix
doesn’t change the determinant.

a
3. det (kc

row by a number k multiplies the determinant by k too.

kbd) = kad — kbc = k det A, which means that scaling a

Exercise 8.8 The area of the parallelogram OABC is equal to the area of
the rectangle with vertices at O and B (with sides a + b and ¢ + d) minus
the area of the two rectangles with sides b and c (check that the two
squares are identical), minus the area of the two identical right triangles
with sides a and ¢ (one below the paralellogram and one above it), and
minus the area of the two identical right triangles with sides b and d (one
to the left of the parallelogram, one to its right). Summing everything:

Area = (a +b)(c+d)—2bc— Z%ac - Z%bd =ad - bc.

Exercise 8.9 We can do this in two ways.

1. The firstis to calculate Ab; = _12

the are of the paralellogram formed by these two vectors:

21 and Ab, = _1267) and calculate

=-21-16+12-27=3-4-(-7-4+9-3) = -12.

=21 =27
12 16

2. The other one is to calculate the area of S

‘_2 _2‘ =-10+6=—4,

3 5

and then calculate the determinant of A, which will give us the
expansion of the area of S:

6 -3

detA:‘ 3 2‘:3.
So

Area of S(A) = detA - Areaof S = —12.

We have kept the signs in order to make clear that both approaches are
identical, but since we are being asked about an area, the answer is 12.
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Exercise 8.10 We have

7 40

AB = (—5 26

) — detAB =18.

On the other hand,
detA =9, detB=2 — detAdetB =18 = det AB.

If we think of A and B as the matrices of two linear transformations, the
change in area caused by the action of first B and then A (or vice versa)
is the same as that caused by the composition AB.

Exercise 8.11 We can write
2 5 10 1 0 3 -5
1 3 0 1 01 -1 2}

3 -5
-1 _
andso A7 = (_1 ’ )

A Solutions to Exercises
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A.9 Eigenvalues and Eigenvectors

1 1
Exercise 9.1 1. A1 =2,Ay=-1,vi = (O) ,Vp = (_1)

2. Al = O,AQ = —3,V1 = (?),Vz = (O)

2 -1

4, )\1 = 2,)\2 = —1,V1 = (_11) , Vo = (;)

Exercise 9.2 1. The characteristic equationis A>—(a+d)A+(ad—bc) =
0.Since tr A = a + d and etA = ad — bc, the identity of the two
expressions is immediate.

2. Expanding the product, we obtain A2 — (A1 +A2)A+A1A; = 0, from
which we derive the result.

3. Wehave A1 = tr A — A, and so tr AA, — /\% = det A. Solving this
quadratic equation yields the result.

1 1
3. A1=+3,/\2=—3,V1=( ),sz )

1 1
Exercise 9.3 L. Ai==-1,A,=2,v{ = (O ,Vy = 3

2. The system (_13) =a ((1)) +b (_13) has as unique solutiona = 2,b =

3. Since Ax = A(avy + bvy) = aAyvy + bAyvy and, in this case, a
2,b = =1, we have
-3.2% —3145728

20 _
Ax = 2(=1)0y,; + 220y, = (2 +2 ) _ ( 1048574) _

Exercise 9.4 The eigenvalues and eigenvectors of A are A1 = -1, A,

SN

2
The vector x = o) can be expressed as a linear combination of the two

eigenvectors (you need to solve the 2 X 2 system of equations) as follows:

X = 2vq] + 2v,.

Hence, we have

2 1 0\ (-2
A (o) =2APv; +2A°v, = 2 (_1) +2 (1) = ( . ) :

Exercise 9.5 1. The terms in the sequence are0,1,1,2,3,5,8,13, ...

2. Since A,41 = A, + Yy, we can substitute Y, = A, _1 to obtain
Ap1 =An + Ay or,making k =n — 1, Ago = Ags1 + A

3. The eigenvalues are A; = (1 + V5)/2 and A, = (1 — V/5)/2. The first

number is called the golden number, or ¢. The second number is

actually equal to 1 — ¢ or —¢~1. The corresponding eigenvectors

are vy = (;)) and v, = (_1¢) .
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. Yo\ _ (1) _ 1 -¢
4. Since (Ao) = (0) =aq ((P) + b( 1 ), we can solve the system to
obtain a = # and b =

~1/(1 + V5). In any case,

Y, _ qbn 1 . (_1)n (P—n—l _(P
An)  1+¢2\9 1+¢2 \1)°
5. The second eigenvalue 1 — \/5 /2 is smaller than 1 in absolute value:
[A3] < 1. This means that, raised to a high power n, it becomes
more and more small and closer to zero. For instance, /\;O ~ 0.008

and /\%O ~ 0.00006, whereas /\%0 ~ 15,127. This means that, for
large 1, we can actually disregard the term with AJ and therefore

Y\ ¢" (1
(&) 75 o)

~ T3 OF operating, a = 2/(5+ V5),b =

In particular, this means that the fraction A, /Y,, = ¢ whenn — oo.

In terms of the Fibonacci sequence, this means that the fractions
between two consecutive Fibonacci numbers approaches ¢ as n
becomes large.

Exercise 9.6 The eigenvalues of the Leslie matrix are Ay = -0.1, A, = 1.5
1 2
with corresponding eigenvectors vi = (_ 0 3) , Vo = ( 1) . As in the

previous exercises, we have

(AI/L) =a(-0.1)! (_(1).3) +b(1.5) (f) ~ b(1.5) (i) .

Now, this means that the fraction I;/M; ~ 2 as t — o0, and since the
eigenvector is being multiplied by a factor (1.5)', the total poppulation
will keep growing without end.

Exercise 9.7 1. The eigenvalues of the transition matrix are A; = 1.02,

1
Ay = 0.58 with corresponding eigenvectors vi = ( 12) ,Vy = (T) .

1
2. Asinthe previous exercises, we have x; = a(1.02)* (1g)+b(0.58)k (?) .

13
k becomes large. This means that the population will keep grwoing
(albeit very slowly) with a stable fraction of owls and rats.

Exercise 9.8 1. D= (2 0) ,P = (3 4) .

3. As before, the term (0.58)F — 0 as k — oo, s0 x¢ ~ a(1.02)* (10) as

01 1 1

a 0 1 0
o= (9]

A Solutions to Exercises

Exercise 9.9 1. A2=PDP~'PDP~! = PD?P~', A% = A2A = PD?*P~'PDP"! =

PD3P~! and so forth.
2. For part 1 we have

g0 (3 4) (20 0) (-1 4)_(-3-20+4 3.22-12
“\t1Jlo 1f\1 =37\ 21041 222-3 )
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and for part 2:

0 _ (1 0)fa 0)(1 0)_ al® 0
13 1/\0 pJ/\-3 1) " \3(a0-b% b0}
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A.10 Complex Numbers

Exercise 10.1 We multiply each side of the equation by x — i5, and
perform complex numbers multiplication:

43+iy = (4+i3)(x—i5) & 43+iy = 4x—i20+i3x+15 &= 43+iy = (4x+15)+(3x—20)i

Because the real and imaginary parts of both sides must be equal, we
have the linear system
4x =28

3x-y =20
which has as unique solution x =7,y = 1.

Exercise 10.2

M) 2-iP=2-0)2-i)2-i)=B-4))2-i)=6-3i —8i —4=2—11i
(2) i13:i12+1:i(i4)3:i

1 i .
G 7=p="

1 1-2i _1-2i 1 2.
1+2i (+20(1-2)) 5 5 5
5 T+i  (A+0i)(=1-1i) -2
®) i-1 (-1+i)(-1-i) 2
6 i+i2+P+it=i+(-1)+(-1)i+(-1)*=0

(4)

=i

Exercise 10.3

2 2 2 2
L (axbi) (a=bi) _(@rbi2) (@-bip
“\a-vbi a+bi| | a2+0p2 a2 + b2
_(a+bi)*+(a-bi)* _a*+b* - 6a%b?
ST @b T @rp

As we can see, z is a real number, and therefore Z = z.

Exercise 10.4

1D w=z+3i=(Rez)+(Imz+3)i = Rew=Rez, Imw=Imz+3
2) w=iz=(-Imz)+(Rez)i = Rew=-Imz, Inw =Rez
B)w=04+2)E+1)=EC+1+|z]?+2)=1+|z]>+2Rez

= Rew=1+z>+2Rez, Imw =0
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Exercise 10.5
M |-l =v(-12 =1
@) |1+ =V12+12=V2
@) 1-il=|1+i =V2
@ QA+ =)1+i*=2
1

1+1

_ 1 _1
[1+i 2

1 1 1
A—i2| 1= 2

7) |1=V3i| =12+ (V312 =2

®)

(6)

Exercise 10.6

Im1+1i
(1) Arg1+i=tan_1( m 1)

-1 Tt
_— ] = 1) = —
Reiti) - W=7

(2) Arg(1+i)_1=Arg1—Arg1+i=_%

(3) Arg (1+i)* =2Arg1+i=

.4>|§’N|:1

(@) Arg(1+i)’ =3Argl+i=

Exercise 10.7

(1) et —e~Hi = (cos(n/4) + isin(n/4)) - (cos(—Tc/4) + isin(—n/4)) -

A Solutions to Exercises

= (cos(n/4) - cos(—n/4)) + i( sin(7t/4) — sin(—n/4)) = 2sin(rt/4)i = V2i

1-edt 1-i (-ip -2 _
14esi 1+i 2 2

2)

(3) e™(1—e"5") = —(1 = (cos(~7t/3) + i sin(—1/3))) = —% - ?i

Exercise 10.8

(1) |_l| =1, Arg—i:-% — _i:e—in/z

2 1+i=\/§,AI‘ 1+i:z=>1+i=\/§ein/4
& 4

3 1—i=\/§,Ar 1_i=_E=>1_i=\/§€_in/4
& 4

@) |(1+i) =2, Arg (1+i)* = g — (141 =2¢m/2

1 V2 T 1 V2
) L D NS S SRS S 7
®) |T5|= 7 A +1) 1 1+i 2°¢

1 1 n 1 1.
6) |l——| == Are(1-i) 2= — = = Z,inf2
©) |a=| A -07 =3 a-ig 2°

(7) 11=3il =2, Arg1-V3i = tan" (-V3) = - &0 — 1-VBi = 2e7P
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Exercise 10.9 1.

cos 360 + isin30 = 9 = (¢19)?

= (cos 0 + isin 6)°

= (526 — 3cos Osin? 6) + i(3 cos® O sin O — sin> 6),

2. Using the hint:

2 cost 0 = (e + e710)!
— 040 | 40120 | o 4 4p=i20 4 p—i40

=2cos46 + 8cos20 + 6.

Exercise 10.10 The relationship between Fourier series and complex
numbers comes from Euler’s formula. Since

e =cosO+isin@ and e =cosO —isin6,

we can express cosine and sine terms in terms of complex exponentials:

; X ; X
(nnx) eMmL 4L
COS =
L 2 !

, (nnx) et —eminT
sin = - .
L 2i
These equalities suggest that we could have chosen to expand f(x) in

terms of e'™*:
> ; nx
fx)= 27 cue™T,
n=—co
The coefficients in the complex formulation c, relate to a, and b, as
follows: ‘
a, —ib

cnzTn forn >0,

a, +ib,
Cp = T

or, in general:

1 (b -
Cp = i[L flx)e™ T dx.

Exercise 10.11 1. The eigenvalues are V3 + i. The action of the matrix
is equivalent to multiplying by the complex number z = V3 + i,
which in turn can be decomposed into a pure rotation of angle 7/6,
e/ = ‘/75 + 1% and a scaling by a factor 2.

. . . 1 -2
2. The eigenvalues are 1+2i. But the matrix is not in the form (2 1 ),

SO
the action of the original matrix is a rotation composed with a
different transformation that scales two lines differently.

3. The eigenvalues are 5/2 + iV23/2. As in the previous example, this

. . 5/2  \23/2
matrix is not in the form

(—\/2_3 /2 5/2

(%362 )

). We can also see that

A Solutions to Exercises
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where the last matrix has eigenvalues A = 1 +i. So we could
understand this transformation as a rotation of angle 71/4 times a
linear transformation that triples the x axis and doubles the y axis.
This descomposition is not unique. In Linear Algebra textbooks
you can find a standard decomposition of matrices with complex
eigenvalues, but we will not see it here.

Vi, 2

4. The eigenvalues are 5 + 72 i, which is a pure rotation of angle /4.
Exercise 10.12

M) z=(-)? = 22=-i & 2= P e 7 — 7= iM/HTK

2) z=(—

(3) 7 = (_1)1/4 — Z4 — ein+27‘[kk €7 — 7= ein/4+kn/2

6—137'(/4,

= z; = e—in/4’ Zy = ei377/4

i = P2 =TIk e 7 = 7=

N =

1/2
V3, 2
2

= z; = e—n/3+nk’ Zy = 627'(/3+7'(k

= z; = Zy = e—m/4[ z3 = ezn/4, Z4 = pi3m/4

(@) z=1"" e 20 =P ke Z & z=¢T

= z, = e—zZn/3, Zy = e—m/3, z3=1, z4= elﬂ/3, Z5 = 61271/3/ z6 = —1
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A.11 Systems of Linear Differential Equations

Exercise 11.1 1. The general solution is

x(t) = cre™ (_21) +coe”t (_11) .

The fixed point is a stable node.

T X L VW VLV VUV ¥V ¥V V¥ vV vV v ¥
N RS S N N T e N N I S T A T T T
AN NN VOOV Y
™o~ N NN VOOV Y
:::\ R T I T T e T T T
H//*: \\\\‘\\xxxxxxx
o MR I R A

ffff; WY VY ey

fffffff\\;\»&;&;;x
- 0 10 SR T A T AR
t11¢¢111\/‘¢HJ‘

1*1&#*««\\,/{“

I Y VL R N A A
_2_«x«\\\\\\\\\ <., , |

L T S O N N L . ~ -, )

SR S S S Y S U N W LU ~ - -

S S S S S S T O L LU ~ -
% A T T T T LU L SRS R L S T LY ~

L S S S S S N O L T W U U \ U N NN N

LS W S W SN N VO W A O O\ O N N N

—4 -2 0 2 4

x

2. The general solution falls outside the scope of this course, as
the matrix has only one eigenvalue A = 1 and one eigenvector
v = (2,1). The fixed point is an unstable degenerate node, with
only one eigenvector. For more on degenerate nodes, see Exercise
11.7.
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7.5 1

1

. The general solution is
4 [—5—3i 4 [—5+3i
— 3it —3it
x(f) = cre ( 17 ) + e ( 17 ) .

The fixed point is a center.
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. The general solution is

x(t) = cre™ (;) +0 (z) )
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There are infinite fixed points, all of them neutrally stable.
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X
. The general solution is
x(£) = cre®it _31_1 + cpe?i! _31+l

The fixed point is an unstable spiral.
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6. The general solution is

x(t) = cie™* (_12) + et (_11) )

The fixed point is a stable node.
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7. The general solution is

x(t) = cre”! (?) + cpet (1) .

The fixed point is a saddle node.
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10.0
PP A A A A S B P B A 4 PP AV AN
AR ARV SRV AR A A G AV A 4 V. SRV AN A SN AN 4 /
[ P R A P PR AR .
A A A S A A 4 Ao A oA ox 7N
50V 7 x oA x xS A A A A A A '~ o
AP A A ¢ P AP A A IV A AV [ —
A A A AP A A A A A -~
by~ AP A A A A1 L=
. oo ¥ IR ki ’/ LA v s o w w » A
b s o A o s /// b . L 7
T T T T PR IR v A
AN (i TN s v o o w e A
7 - Y & 4| v s v x x xS
50 T o~y Y N N KN o S ok k ow s xS
7 TN A PV IRV e s s x w x s ox A
™~ 7 PV VIS PRIV
] 4 S S X xS N o b w  ow ow A
PRV v s o s A
~10.0 : :
~10.0 -75 -5.0 25 0.0 2.5 5.0 7.5 10.0

8. The general solution falls outside of the scope of this course: the
matrix has only one eigenvalue A = -1 with one eigenvector
v = (=1, 1). The fixed point is a stable degenerate node. For more
on degenerate nodes, see Exercise 11.7.

10.0 NN X ¥ ¥ ¥ ¥ LV YAV V¥ vV vV vV v v\
N N NN N\ AT T T R
S NN NN NN N VLY Ny
NONON NN NN A VOO Y
~ o~ NN N T R R N N T
i e N N O S U S Y
:'///»\ N A T I TR R
Z‘S-ff//:, N B e e T e
M I ;‘ NENYOV VR
I e e e S \\\\\¥ [ B B T
LT R S SR S | (O YA S O AN \/ IR
< L A
254 A A A 2 X RN X X X XN S <~ v 1))
LS T S L O O T S O N N ~ /)
T T T N S O A S S S . ~ - «
S S O S O A O O N SRR NN N N o~
L S T S O SN LS L O O NN N xS
EE I S S S L SR S Y U WL S L S S G N N N ~ N
L O U O LU NN X N
JEET Y, AL SN S SN W VL V. VAN V. 0 . W VA V. W WA W W L N
-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

x S

Exercise 11.2 There are two imaginary eigenvalues, A1 , = +iVab which
makes the origin a center. The trajectories will oscillate around the origin:
if Romeo startes loving Juliet (in the first quadrant), she starts hating
him, and the trajectories go downward. Then, Romeo will become more
indifferent towards Juliet, and trajectories will turn to the left. At some
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point, Romeo’s indifference will trigger Juliet’s love, making the trajectory
turn upward. Finally, As Juliet now loves him, Romeo will start loving
her back, turning the trajectory to the right.
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Exercise 11.3 1. The eigenvalues are A1, = —1 + b, with correspond-
ing eigenvectors v = (1,1) and v, = (=1, 1), so the behavior of the
system will depend on whether a > b (stable node), a = b (infinite
line of stable nodes) or a < b (saddle node).

2. The eigenvalues are A1, = 1/2 + V3/2i, so the fixed point is an

unstable spiral.
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3. There are two different real eigenvalues +Vbc and so the fixed point
is a saddle point. Depending on the initial conditions, Romeo and
Juliet’s love for each other will either go to infinity, or to minusn
infinity (if the initial love is below a given threshold).
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Exercise 11.4 There are two eigenvalues, —kj and 0, and the corresponding
eigenvectors are vi = (1, 1) and v, = (0, 1). So the general solution is

1 0 cre~hat
_ —kqt _ 1
x(t) = cre (_1) +co (1) = (62 _ cle‘klt) .
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We could have also solved this system directly, as x(t) = c;e™ ! from

the first equation, and then we can integrate %,(t) = c1kje ™% to x5(t) =
—kqt

Cy) — (1€ .

Since x1(0) = K, x2(0) = 0, then we can substitute in the general solution
to obtain ¢; = K, ¢, = —K.

Exercise 11.5 Writing the system as

0

—
QR
([

|
e

N
=

where w? = k /m, we see that there are two complex eigenvalues, +iw,
with corresponding eigenvectors vq » = (¥i, @). We can write the solution
in terms of the complex eigenvalues and operate, or we can remember
that, in this case,

; ; in wt — t
X(i’) = c1Re (Elth1) + coIm (Elwtvl =0 st + Cp C(.)Sa) .
w cos wt w sin wt

Since x(0) = 0,v(0) = 1, we have ¢; = 1/w, ¢ = 0 and therefore

1 .
P sin wt

1
x(t) = ¢ = x(t) = —sinwt.
coswt @

Exercise 11.6 1. Since X1 + X, = 0 it must be that x1(f) + x2(f) = A, a
constant. This makes sense, since it measures the total area of the
forest, which remains constant.

2. Since x1(0)+x2(0) = 20, then itis always the case that x1 (f)+x2(t) =
20, and so x2(f) = 20 — x1(t), which substituted in the first equation
yields x1 =2 — 0.3x7.

3. The eigenvalues of the system are A; = 0 and A, = —0.3, with cor-
responding eigenvectors vi = (1,2) and v, = (-1, 1). The general

solution is then
_ 1 —o03t [—1
x(t) = ¢ (2)+cze (1)

Since x1(0) = 2, x2(0) = 18, we have ¢; = 20/3, ¢, = 14/3 and so

(1) = L (20140
X=3 140+ 140703
and as t — oo the forest reaches a stable equilibrium (20/3, 40/3).

Exercise 11.7 1. Here all vectors in the plane are eigenvectors, and
the trajectories are paralell to the initial conditions for all time.
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2. This is a case of a degenerate unstable node. There is only one
eigenvector (1, 0).
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From Strogatz:

A good way to think about the degenerate node is to
imagine that it has been created by deforming an or-
dinary node. The ordinary node has two independent
eigendirections; all trajectories are parallel to the slow
eigendirection as t — oo, and to the fast eigendirection
ast — —oo.

Now suppose we start changing the parameters of the
system in such a way that the two eigendirections

A Solutions to Exercises

190



are scissored together. Then some of the trajectories
will get squashed in the collapsing region between the
two eigendirections, while the surviving trajectories get
pulled around to form the degenerate node. . Another
way to get intuition about this case is to realize that the
degenerate node is on the borderline between a spiral
and a node. The trajectories are trying to wind around
in a spiral, but they don’t quite make it.
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A.12 Systems of Nonlinear Differential
Equations

Exercise 12.1 1. Thefixed pointsare (0, 0), (0,4/5), (1/2,0),(1/2,3/10).
The Jacobian matrix is

1-4x 0
Dfx,y) = ( —5y  4-5x—10y)"

Now, for each fixed point:

» Df(0,0) = ((1) 2) , 50 A1 = 1,4, = 4 and the origin is an

unstable node.
1 0
» D£(0,4/5) = (_4 _4)

rium is a saddle point.
-2 0

» Df(1/2,0) = 0 32

librium is a saddle point.

» Df(1/2,3/10) = ( 2

,80 A1 =1, = —4 and the equilib-

) ,80 A1 = =2, Ay = 3/2 and the equi-

0
-15/10 -3/2
and the equilibrium is a stable node.

), SO Al = —Z,AQ = —3/2

Vi
Vo
Vo
i
Vo
Vo

-— - - -— -— -

NIRRT S S e e e e

M T = - - v w— w— - — — ]
N R = — -— =

’

/

’
AN
\

L 1 N N S RS
LU W N e

/
/)
’

LR WA N N S A [

(L S SN

A
(T
’

e N e e |

2 AAY

f
t
{
¥
t

A
b
A
t
i

AN
Y
X
A

-~ 4
\
LY
t
4

2. The fixed points are (0, 0), (0, 1/2), and(2, 0). The Jacobian matrix

is
_[2-2x -2y —2x
Df(x,y)—( y 14y —x]°

Now, for each fixed point:

2
» Df(0,0) = (O (1)) ,s0 A1 = 2,A; = 1 and the origin is an

unstable node.
1
» Df(0,1/2) = (_1/2

librium is a saddle point.

_01) ,50 A1 = 1,4, = -1 and the equi-
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-2 -4
0 -1
rium is a stable node.

» Df(2,0) = ( ), so A1 = =2, A, = =1 and the equilib-
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. The fixed points are (0, 0), (0, 1), (1,0), (1/2,1). The Jacobian matrix
is
_(4-8x-2y 2x
pre =755

Now, for each fixed point:

4
» Df(0,0) = (0 (1)) ,s0 A1 = 1,A; = 4 and the origin is an

unstable node.

» Df(0,1) = 3 _01 ,50 A1 =2, Ay = =1 and the equilibrium
is a saddle point.

» Df(1,0) = _04 1]%0 A1 = —4,A; = 1and the equilibrium
is a saddle point.

» Df(1/2,1) = _02 :1) ,50 A1 = =2, A = —1 and the equilib-

rium is a stable node.
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4. The fixed points are (0,0), and(2, —2). The Jacobian matrix is

-2
Dir, ) = (1 ¥ )

Now, for each fixed point:

0

» Df(0,0) = 1 i, and the origin is an

-2 1, V7
1] SO /\1[2 =3 + >
unstable spiral.

-2 0
1 1
is a saddle point.

» Df(2,-2) = ,80 A1 = =2, Ay = 1and the equilibrium
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Exercise 12.2 There are three fixed points: (0,0) and (a,+v/a). The
Jacobian matrix is

e E



Now, for each fixed point:

» Df(0,0) = (_01 —Oa) ,50 A1 = y/a and Ay = —/a and the origin is
a saddle point.
\Va 0 .
» Df(a,+a) = 21 ava)’ so A1 = Va, A, = 2+/a and the equilib-

rium is an unstable node.

» Df(a,—\a) = (__‘f _20\/3) , 50 A1 = =2, Ay = —24/a and the

equilibrium is an unstable node.
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Exercise 12.3 There are four fixed points: (0, 0), (0, 5), (5, 0) and (10/3,10/3).
The Jacobian matrix is

Df(x,y)=(10_4x_y -X

-y 10-x-4y)’

Now, for each fixed point:

» Df(0,0) = (100 100) ,50 A1 =10 and A, = 10 and the origin is an
unstable node.

» Df(0,5) = (_55 —20) ,s0 A1 =5, = —10 and the equilibrium is
a saddle node.

» Df(5,0) = _;O _55) ,s0 A1 = =10, A2 = 5 and the equilibrium is

a saddle node.
_(-20/3 10/3
» Df(10/3,10/3) = ( 10/3 -20/3

the equilibrium is a stable node.

) ,s0 A1 = =10,A, = —10/3 and
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Exercise 12.4 In all cases the Jacobian matrix is

1- 2N1 - LI12N2
—a1 N>

—a12Ny

Df(N1,Ny) = ( 1-2N; —an Ny |’

In all cases we have three fixed points: (0, 0), (1, 0), (0, 1) whose Jacobian

matrices are:

1
» Df(0,0) = ( 0 (1)) , so the origin is always unstable.

» Df(1,0) = _01 1—1112 , so this equilibrium will be stable or a
—ax
saddle point (unstable) depending n the value of ay;.
1-
» Df(0,1) = aﬂlz 01 , so this equilibrium will be stable or a
—ay -

saddle point (unstable) depending n the value of a1,.

1—ap 1-an
1= apay’1-apan
(and therefore of interest to us in this population model) if a1, < 1 and
ay1 < 1 (case 3), orif ap; > 1 and ajp > 1 (case 4).

There is a fourth fixed point ( which is positive

1. The fourth fixed point does not matter here. Since 41, < 1 and
a1 > 1, the point (1, 0) is stable and the point (0, 1) is unstable. So
all trajectories go to (1, 0): species 1 outcompetes species 2.

2. The fourth fixed point does not matter here. Since a1, > 1 and
a1 < 1, the point (1, 0) is unstable and the point (0, 1) is stable. So
all trajectories go to (0, 1): species 2 outcompetes species 1.

3. Since both a1 < 1 and a1 < 1, both (1,0) and (0, 1) are saddle
points and the fourth fixed point (10/14,10/14) is stable, since
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) with eigenvalues A1 =

~4/14
-10/14

-1 and Ay = =3/7. All trajectories go to (10/14,10/14): there is

coexistence of both species.
4. Since both a1, > 1 and ax; > 1, both (1,0) and (0, 1) are saddle

-10/14
—4/14

its Jacobian matrix is (

I AR A I T s

) with eigenvalues A; = —1 and

-2/3
-1/3

-1/3
-2/3

Al e koo AN - L]

\

A I R S i \\ Iy S |

o-

v

Ay = 1/3. Trajectories go either to (1,0) or to (0, 1) depending on

the initial conditions.

points and the fourth fixed point (1/3, 1/3) is a saddle point, since

its Jacobian matrix is (

5).

0) and (1,

1. The two fixed points are (0,

2. The Jacobian matrix is

Exercise 12.5

5-P -N
p N-1)°

|

For (0, 0) the eigenvalues are A1 = 5 and A, = —1, so the origin is a

saddle point.
3. For (1,5) the eigenvalues are +V5, which suggest a center where

Dathbff(N,P)

the trajectories oscillate around the point depending on the initial
conditions. This is what happens:
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Exercise 12.6 Since we want —V(V —3/5)(V — 1) and V /¢ to intersect,
we need to equate the two curves:

_V(V =3/5)(V 1) = %

Since V = 0, w = 0 is always an intersecting point, we can divide by V
and we end with the quadratic equation

4+
1
V**2—§V+§+—:O - V= —1
5 5 ¢ 5
Since we want this equation to at least have one solution, ¢ > 25. In

particular, the minimal value of ¢ that creates a new intersection (at
x =4/5)is c = 25.

A Solutions to Exercises

198
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0.100 A1

0.075 A1

0.050 A

0.025 A

0.000 A1

—0.025 4

—0.050 ~

—0.075 4

—0.100 A

0.0 0.2 0.4 0.6 0.8 1.0
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